

CONTENTS

Overview

Intel [®] FPGA Solutions Portfolio	
---	--

1

Devices

Generation 10 Device Portfolio	
- Generation 10 FPGAs and SoCs	2
- Intel Stratix [®] 10 FPGA and SoC Overview	3
- Intel Stratix 10 FPGA Features	5
- Intel Stratix 10 SoC Features	7
- Intel Stratix 10 TX Features	9
- Intel Stratix 10 MX Features	11
- Intel Arria [®] 10 FPGA and SoC Overview	14
- Intel Arria 10 FPGA Features	15
- Intel Arria 10 SoC Features	17
- Intel Cyclone [®] 10 FPGA Overview	19
 Intel Cyclone 10 GX FPGA Features 	20
 Intel Cyclone 10 LP FPGA Features 	21
- Intel MAX [®] 10 FPGA Overview	23
- Intel MAX 10 FPGA Features	24
28 nm Device Portfolio	
- Stratix V FPGA Features	25
 Arria V FPGA and SoC Features 	27
- Cyclone V FPGA Features	29
- Cyclone V SoC Features	31
40 nm Device Portfolio	
- Stratix IV FPGA Features	33
- Arria II GZ and GX FPGA Features	35
60 nm Device Portfolio	
- Cyclone IV GX and E FPGA Features	37
- Cyclone III and Cylone III LS FPGA Features	39
MAX CPLD Series	
- MAX V and MAX II CPLD Features	41
Configuration Devices	43
Device Ordering Codes	44
 Intel Enpirion[®] Power Solutions 	51
	51
Design Tools, OS Support, and Process	ors

Design	100ls, US	Support	i, and Pr	ocessors

Intel Quartus [®] Prime Software	55
DSP Builder for Intel FPGAs	58
Intel FPGA SDK for OpenCL™	59
Intel SoC FPGA Embedded Development Suite	60
SoC Operating System Support	61
Nios [®] II Processor	62
Nios II Processor Embedded Design Suite	63
Nios II Processor Operating System Support	64
Intel's Customizable Processor Portfolio	65

Intellectual Property

Intel FPGA and DSN Member IP Functions 60	6
---	---

Protocols

Transceiver Protocols	68
	00

Development Kits

Intel FPGA and Partner Development Kits	70
SoC System on Modules	77
Single-Board Computer	79
Design Store	80

Solutions

Intel FPGA Design Solutions Network	81
-------------------------------------	----

Training

Training Overview	82
Instructor-Led, Virtual, and Online Classes	83
 Online Training 	84

INTEL FPGA SOLUTIONS PORTFOLIO

Intel delivers the broadest portfolio of programmable logic devices—FPGAs, SoCs, and CPLDs—together with software tools, intellectual property (IP), embedded processors, customer support, and technical training. Intel's product leadership, excellent value, and superior quality of service give you a measurable advantage. Bring your great ideas to life faster, better, and more cost effectively.

FPGAs and CPLDs

Intel FPGAs and CPLDs give you the flexibility to innovate, differentiate, and stay ahead in the market. We have four classes of FPGAs to meet your market needs, from the industry's highest density and performance to the most cost effective.

HIGH-END FPGAs	MIDRANGE FPGAs	LOWEST COST AND POWER FPGAs	NON-VOLATILE FPGAs AND LOW-COST CPLDs
Intel [®] Stratix [®] FPGA•SOC	Intel [°] Arria [°] FPGA•SOC	Intel [°] Cyclone [°] FPGA•SoC	Intel [°] MAX [°] FPGA•CPLD
 Highest bandwidth, highest density Integrated transceiver and processor variants 	 Balanced cost, power, and performance Integrated transceiver and processor variants 	 Lowest system cost and power Integrated transceiver and processor variants Fast time to market 	 Instant-on, non-volatile solution Single-chip, dual-configuration non-volatile FPGA Low-cost, low-power CPLDs
• Design entire systems on a chip	Comprehensive design protection		

SoCs

SoCs bring high integration and advanced system, power, and security management capabilities to your platform. Intel SoCs are supported by industry-standard ARM* tools and a broad ecosystem of operating systems and development tools.

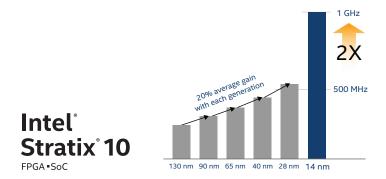
HIGH-END SoCs	MIDRANGE SoCs	LOWEST COST AND POWER SoCs
• 64 bit quad-core ARM Cortex*-A53 processor	• 32 bit dual-core ARM Cortex-A9 processor	• 32 bit dual-core ARM Cortex-A9 processor
 Performance/power efficiency 	• 1.5 GHz maximum CPU frequency	• 925 MHz maximum CPU frequency
• Virtualization support	 Hardened floating-point digital signal processing (DSP) ARM Development Studio 5* (DS-5*) Intel SoC FPGA Edition tools 	Broad ecosystem supportARM DS-5 Intel SoC FPGA Edition tools

Power Solutions

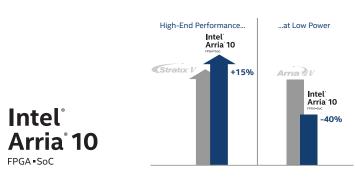
Power your systems with Intel Enpirion Power Solutions. Our integrated power management products provide a combination of small footprint, low-noise performance, and high efficiency. Intel Enpirion power system-on-chip (PowerSoC) products provide a qualified and reliable solution that enables you to complete your design faster.

Productivity-Enhancing Design Software, Embedded Processing, IP, Development Kits, and Training

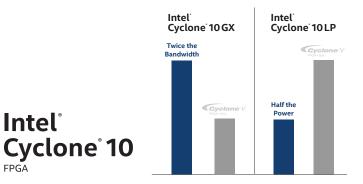
With Intel, you get a complete design environment and a wide choice of design tools—all built to work together so your designs are up and running fast. You can try one of our training classes to get a jump-start on your designs. Choose Intel and see how we enhance your productivity and make a difference to your bottom line.


Intel

Enpirion

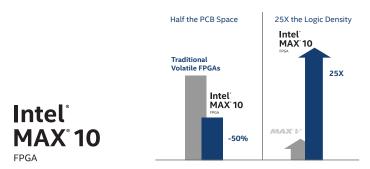

Power Solutions

GENERATION 10 FPGAs AND SoCs


Intel's Generation 10 FPGAs and SoCs are optimized based on process technology and architecture to deliver the industry's highest performance and highest levels of system integration at the lowest power. Generation 10 device families include Intel Stratix 10 FPGAs and SoCs, Intel Arria 10 FPGAs and SoCs, Intel Cyclone 10 FPGAs, and Intel MAX 10 FPGAs.

- 2X core performance with revolutionary Intel Hyperflex[™] FPGA architecture[†]
- Up to 70% power savings[†]
- Highest density FPGA with up to 5.5 M logic elements (LEs)
- 64 bit guad-core ARM Cortex-A53 processor system
- Up to 10 tera floating point operations per second (TFLOPS) single-precision floating-point throughput
- · Built on Intel's 14 nm Tri-Gate process technology

- 15% higher performance than the previous high-end devices[†]
- 40% lower midrange power[†]
- 1.5 GHz dual-core ARM Cortex-A9 processor
- IP core support, including 100G Ethernet, 150G/300G Interlaken, and PCI Express* Gen3
- Built on TSMC's 20 nm process technology

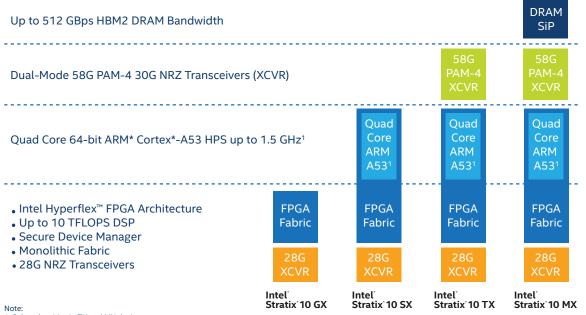

Intel Cyclone 10 GX

FPGA

- · Optimized for high-bandwidth, high-performance applications
- The industry's first low-cost FPGA with 12.5 Gbps transceiver I/O support
- High-performance 1,866 Mbps external memory interface
- 1.434 Gbps LVDS I/Os
- The industry's first low-cost FPGA with IEEE 754 compliant hard floating-point DSP blocks

Intel Cyclone 10 LP

- Optimized for cost and power-sensitive applications
- Chip-to-chip bridging
- I/O expansion
- Control applications



- Single-chip, dual-configuration non-volatile FPGA
- Optimal system component integration for half the PCB space of traditional volatile FPGAs
- · Broad range of IP including analog-to-digital converters (ADCs), DSP, and the Nios II embedded soft processor

INTEL STRATIX 10 FPGA AND SoC Overview

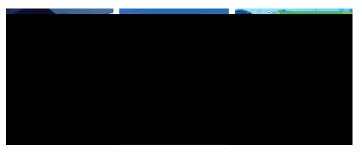
Intel FPGAs and SoCs deliver breakthrough advantages in performance, power efficiency, density, and system integration that are unmatched in the industry. Featuring the revolutionary Intel Hyperflex FPGA architecture and built on the Intel 14 nm Tri-Gate process, Intel Stratix 10 devices deliver 2X core performance gains over previous-generation, high-performance FPGAs with up to 70% lower power[†].

Intel® Stratix® 10 Device Family Variants

1. Select densities in TX and MX devices

The figure above shows the core performance benchmarks achieved by early access customers using the Intel Stratix 10 Hyperflex FPGA architecture. With the 2X performance increase, customers in multiple end markets can achieve significant improvements in both throughput and area utilization, with up to 70% lower power[†]. Intel Stratix 10 FPGA and SoC system integration breakthroughs include:

- Heterogeneous 3D system in package (SiP) integration
- The highest density FPGA fabric with up to 5.5 million LEs
- Up to 10 TFLOPS of IEEE 754 compliant single-precision floating-point DSP throughput
- Secure Device Manager (SDM) with the most comprehensive security capabilities
- Integrated quad-core 64 bit ARM Cortex-A53 hard processor system up to 1.5 GHz
- Complementary optimized and validated Intel Enpirion power solutions
- Dual-mode 30 Gbps non-return-to-zero (NRZ) and 58 Gbps PAM-4 transceivers
- HBM2 DRAM SiP delivering up to 512 GBps of memory bandwidth


These unprecedented capabilities make Intel Stratix 10 devices uniquely positioned to address the design challenges in next-generation, high-performance systems in virtually all end markets including wireline and wireless communications, computing, storage, military, broadcast, medical, and test and measurement.

Communications

- 400G/500G/1T optical transmission
- 200G/400G bridging and aggregation
- 982 MHz remote radio head
- Mobile backhaul
- 5G wireless communications

Computing and Storage

- Data center server acceleration
- High-performance computing (HPC)
- Oil and gas exploration
- Bioscience

Defense

- Next-generation radar
- Secure communications
- Avionics and guidance systems

Broadcast

- High-end broadcast studio
- High-end broadcast distribution
- Headend encoder or EdgeQAM or converged multiservice access platform (CMAP)

INTEL STRATIX 10 FPGA FEATURES

ODUCT LINE	GX 400	GX 650	GX 850	GX 1100	GX 1650	GX 2100	GX 2500	GX 2800	GX 4500	GX 5500
LEs ¹	378,000	612,000	841,000	1,092,000	1,624,000	2,005,000	2,422,000	2,753,000	4,463,000	5,510,000
Adaptive logic modules (ALMs)	128,160	207,360	284,960	370,080	550,540	679,680	821,150	933,120	1,512,820	1,867,680
ALM registers	512,640	829,440	1,139,840	1,480,320	2,202,160	2,718,720	3,284,600	3,732,480	6,051,280	7,470,720
Hyper-Registers from Intel Hyperflex FPGA architecture	er-Registers from Intel Hyperflex FPGA architecture Millions of Hyper-Registers distributed throughout the monolithic FPGA fabric									
ogrammable clock trees synthesizable Clock trees										
M20K memory blocks	1,537	2,489	3,477	4,401	5,851	6,501	9,963	11,721	7,033	7,033
M20K memory size (Mb)	30	49	68	86	114	127	195	229	137	137
MLAB memory size (Mb)	2	3	4	6	8	11	13	15	23	29
Variable-precision DSP blocks	648	1,152	2,016	2,520	3,145	3,744	5,011	5,760	1,980	1,980
18 x 19 multipliers	1,296	2,304	4,032	5,040	6,290	7,488	10,022	11,520	3,960	3,960
Peak fixed-point performance (TMACS) ²	2.6	4.6	8.1	10.1	12.6	15.0	20.0	23.0	7.9	7.9
Peak floating-point performance (TFLOPS) ³	1.0	1.8	3.2	4.0	5.0	6.0	8.0	9.2	3.2	3.2
Secure device manager										
Maximum user I/O pins	392	400	736	736	704	704	1160	1160	1640	1640
Maximum LVDS pairs 1.6 Gbps (RX or TX)	192	192	360	360	336	336	576	576	816	816
Total full duplex transceiver count	24	48	48	48	96	96	96	96	24	24
GXT full duplex transceiver count (up to 30 Gbps)	16	32	32	32	64	64	64	64	16	16
GX full duplex transceiver count (up to 17.4 Gbps)	8	16	16	16	32	32	32	32	8	8
PCI Express hard intellectual property (IP) blocks (Gen3 x16)	1	2	2	2	4	4	4	4	1	1
Memory devices supported		_		DDR4, DDR3, LPDDR3,	RLDRAM 3, QDR IV, QD)R II+, QDR II+ Extreme	, QDR II, HMC, MoSys			
	I/O Count, LVDS Pairs, and Tran	sceiver Count ⁴								
152 pin (35 mm x 35 mm, 1.0 mm pitch)	392,8,192,24	392,8,192,24	_	_	-	-	-	_	_	

F1152 pin (35 mm x 35 mm, 1.0 mm pitch)	392,8,192,24	392,8,192,24	-	-	-	-	-

View device ordering codes on page 44.

INTEL STRATIX 10 Soc FEATURES

PRC	DOUCT LINE	SX 400	SX 650	SX 850	SX 1100	SX 1650	SX 2100	SX 2500	SX 2800	SX 4500	SX 5500	
	LEs ¹	378,000	612,000	841,000	1,092,000	1,624,000	2,005,000	2,422,000	2,753,000	4,463,000	5,510,000	
	Adaptive logic modules (ALMs)	128,160	207,360	284,960	370,080	550,540	679,680	821,150	933,120	1,512,820	1,867,680	
	ALM registers	512,640	829,440	1,139,840	1,480,320	2,202,160	2,718,720	3,284,600	3,732,480	6,051,280	7,470,720	
	Hyper-Registers from Intel Hyperflex FPGA architecture	Millions of Hyper-Registers distributed throughout the monolithic FPGA fabric										
s	Programmable clock trees synthesizable		Hundreds of synthesizable clock trees									
urce	M20K memory blocks	1,537	2,489	3,477	4,401	5,851	6,501	9,963	11,721	7,033	7,033	
Resources	M20K memory size (Mb)	30	49	68	86	114	127	195	229	137	137	
œ	MLAB memory size (Mb)	2	3	4	6	8	11	13	15	23	29	
	Variable-precision DSP blocks	648	1,152	2,016	2,520	3,145	3,744	5,011	5,760	1,980	1,980	
	18 x 19 multipliers	1,296	2,304	4,032	5,040	6,290	7,488	10,022	11,520	3,960	3,960	
	Peak fixed-point performance (TMACS) ²	2.6	4.6	8.1	10.1	12.6	15.0	20.0	23.0	7.9	7.9	
	Peak floating-point performance (TFLOPS) ³	1.0	1.8	3.2	4.0	5.0	6.0	8.0	9.2	3.2	3.2	
	Secure device manager	AES-2	256/SHA-256 bi	tstream encrypti	on/authenticatio		lonable function ttack protection		56/384 boot coo	de authentication	n,	
I/O and Architectural Features	Hard processor system ⁴			IA), system mem	k-A53 up to 1.5 (ory management ART x2, SPI x4, I ²	unit, cache cohe	erency unit, hard	memory contro	ollers, USB 2.0 x2			
al Fe	Maximum user I/O pins	392	400	736	736	704	704	1160	1160	1640	1640	
ectur	Maximum LVDS pairs 1.6 Gbps (RX or TX)	192	192	360	360	336	336	576	576	816	816	
chite	Total full duplex transceiver count	24	48	48	48	96	96	96	96	24	24	
d An	GXT full duplex transceiver count (up to 30 Gbps)	16	32	32	32	64	64	64	64	16	16	
0 an	GX full duplex transceiver count (up to 17.4 Gbps)	8	16	16	16	32	32	32	32	8	8	
)/1	PCI Express hard intellectual property (IP) blocks (Gen3 x16)	1	2	2	2	4	4	4	4	1	1	
	Memory devices supported		DI	DR4, DDR3, LPDD) R3, RLDRAM 3, (QDR IV, QDR II+, (QDR II+ Extreme	, QDR II, HMC, M	loSys			
Pacl	kage Options and I/O Pins: General-Purpose I/O (GPIO) Co	unt, High-Volta	ge I/O Count, LV	DS Pairs, and Tra	nsceiver Count⁵							
F11	52 pin (35 mm x 35 mm, 1.0 mm pitch)	392,8,192,24	392,8,192,24	-	-	-	-	-	-	-	-	
F17	60 pin (42.5 mm x 42.5 mm, 1.0 mm pitch)	-	400,16,192,48	-	-	-	_	-	-	-	-	
F17	60 pin (42.5 mm x 42.5 mm, 1.0 mm pitch)	-	_	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	-	-	
F23	97 pin (50 mm x 50 mm, 1.0 mm pitch)	-	-	-	-	704,32,336,96	704,32,336,96	704,32,336,96	704,32,336,96	-	-	
-29	12 pin (55 mm x 55 mm, 1.0 mm pitch)	_	_	_	_	_	_	1160,8,576,24	1160,8,576,24	1640,8,816,24	1640,8,816,24	

Notes:

1. LE counts valid in comparing across Intel FPGAs, and are conservative versus competing FPGAs.

2. Fixed-point performance assumes the use of pre-adders.

3. Floating-point performance is IEEE 754 compliant single precision.

4. Quad-core ARM Cortex-A53 hard processor system only available in Intel Stratix 10 SX SoCs.

5. A subset of pins for each package are used for high-voltage, 3.0 V and 2.5 V interfaces.

6. All data is preliminary, and may be subject to change without prior notice.

344,8,168,24 Numbers indicate total GPIO count, high-voltage I/O count, LVDS pairs, and transceiver count.

Indicates pin migration path.

View device ordering codes on page 44.

	HARD PROCESSOR SYSTEM (HPS)
Processor	Quad-core 64 bit ARM Cortex-A53 MPCore* processor
Maximum processor frequency	1.5 GHz ¹
Processor cache and co-processors	 L1 instruction cache (32 KB) L1 data cache (32 KB) with error correction code (ECC) Level 2 cache (1 MB) with ECC Floating-point unit (FPU) single and double precision ARM NEON* media engine ARM CoreSight* debug and trace technology System Memory Management Unit (SMMU) Cache Coherency Unit (CCU)
Scratch pad RAM	256 KB
HPS DDR memory	DDR4, DDR3, and LP DDR3 (Up to 64 bit with ECC)
DMA controller	8 channels
EMAC	3X 10/100/1000 Ethernet media access controller (EMAC) with integrated DMA
USB on-the-go (OTG) controller	2X USB OTG with integrated DMA
UART controller	2X UART 16550 compatible
Serial peripheral interface (SPI) controller	4X SPI
I ² C controller	5X I ² C
Quad SPI flash controller	1X SIO, DIO, QIO SPI flash supported
SD/SDIO/MMC controller	1X eMMC 4.5 with DMA and CE-ATA support
NAND flash controller	1X ONFI 1.0 or later 8 and 16 bit support
General-purpose timers	4X
Software- programmable general-purpose I/Os (GPIOs)	Maximum 48 GPIOs
HPS DDR Shared I/Os	3X 48 - May be assigned to HPS for HPS DDR access
Direct I/Os	48 I/Os to connect HPS peripherals directly to I/O
Watchdog timers	4X
Security	Secure device manager, Advanced Encryption Standard (AES) AES-256/SHA-256 bitstream encryption/authentication, PUF, ECDSA 256/384 boot code authentication, side channel attack protection

Notes:

1. With overdrive feature.

		·	

INTEL STRATIX 10 MX FEATURES

Notes:

1. LE counts valid in comparing across Intel FPGAs, and are conservative versus competing FPGAs.

Fixed-point performance assumes the use of pre-adders.
 Floating-point performance is IEEE 754 compliant single precision.
 A subset of pins for each package are used for high-voltage, 3.0 V and 2.5 V interfces.

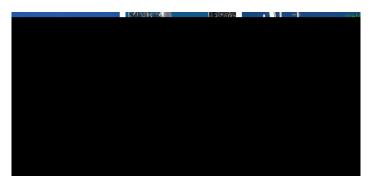
.

	HARD PROCESSOR SYSTEM (HPS)
Processor	Quad-core 64 bit ARM Cortex-A53 MPCore processor
Maximum processor frequency	1.5 GHz ¹
Processor cache and co-processors	 L1 instruction cache (32 KB) L1 data cache (32 KB) with error correction code (ECC) Level 2 cache (1 MB) with ECC Floating-point unit (FPU) single and double precision ARM NEON media engine ARM CoreSight debug and trace technology System Memory Management Unit (SMMU) Cache Coherency Unit (CCU)
Scratch pad RAM	256 KB
HPS DDR memory	DDR4, DDR3, and LP DDR3 (Up to 64 bit with ECC)
DMA controller	8 channels
EMAC	3X 10/100/1000 Ethernet media access controller (EMAC) with integrated DMA
USB on-the-go (OTG) controller	2X USB OTG with integrated DMA
UART controller	2X UART 16550 compatible
Serial peripheral interface (SPI) controller	4X SPI
I ² C controller	5X I ² C
Quad SPI flash controller	1X SIO, DIO, QIO SPI flash supported
SD/SDIO/MMC controller	1X eMMC 4.5 with DMA and CE-ATA support
NAND flash controller	1X ONFI 1.0 or later8 and 16 bit support
General-purpose timers	4X
Software- programmable general-purpose I/Os (GPIOs)	Maximum 48 GPIOs
HPS DDR Shared I/Os	3X 48 - May be assigned to HPS for HPS DDR access
Direct I/Os	48 I/Os to connect HPS peripherals directly to I/O
Watchdog timers	4X
Security	Secure Device Manager, Advanced Encryption Standard (AES) AES-256/SHA-256 bitstream encryption/authentication, PUF, ECDSA 256/384 boot code authentication, side channel attack protection

Notes:

1. With overdrive feature.

SMALL PACKAGE. BIG ENGINE. Intel® Enpirion® Power Solutions


New multi-output and interchangeable Intel[®] Enpirion[®] EZ6301 and EZ6303QI PowerSoCs.

The EZ6301QI and EZ6303QI are highly integrated multi-output PowerSoCs designed to make power design easier. The EZ6301QI has a single 1.5A DC-DC switching converter output and two 300 mA low-dropout (LDO) linear regulator outputs. The EZ6303QI has a single 2.2A DC-DC switching converter output and two 300 mA LDO outputs. These multi-output devices deliver excellent power density and give you the flexibility to switch one for the other without having to spin the PCB if your power requirements change. The EZ6301QI and EZ6303QI outputs are independent, which enables one multi-output PowerSoC to replace three separate power converter devices. Reducing the number of separate power converters in a system can dramatically improve system level reliability.

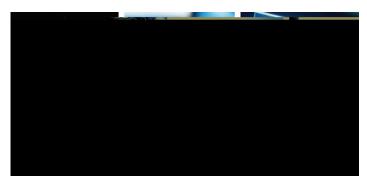
INTEL ARRIA 10 FPGA AND SoC OVERVIEW

Intel Arria 10 FPGAs and SoCs deliver the highest performance at 20 nm, offering a one speed-grade performance advantage over competing devices. Intel Arria 10 FPGAs and SoCs are up to 40% lower power than previous generation FPGAs and SoCs, and feature the industry's only hard floating-point DSP blocks with speeds up to 1,500 giga floating-point operations per second (GFLOPS)[†]. The Intel Arria 10 FPGAs and SoCs are ideal for the following end market applications.

Wireless

Applications

- Remote radio head
- Mobile backhaul
- Active antenna
- Base station
- 4G/Long Term Evolution (LTE) macro eNB
- Wideband Code Division Multiple Access (W-CDMA)


Cloud Service and Storage

Applications

- Flash cache
- Cloud
- Server
- Financial
- Bioscience
- Oil and gas
- Data center server acceleration

Broadcast

Applications

- Switcher
- Server
- Encoder/decoder
- Capture cards
- Editing
- Monitors
- Multiviewers

INTEL ARRIA 10 FPGA FEATURES

	TLINE	GX 160	GX 220	GX 270	GX 320	GX 480	GX 570	GX 660	GX 900	GX 1150	GT 900	GT 1150
	Part number reference	10AX016	10AX022	10AX027	10AX032	10AX048	10AX057	10AX066	10AX090	10AX115	10AT090	10AT115
	LEs (K)	160	220	270	320	480	570	660	900	1,150	900	1,150
	System logic elements (K)	210	288	354	419	629	747	865	1,180	1,506	1,180	1,506
	Adaptive logic modules (ALMs)	61,510	83,730	101,620	118,730	181,790	217,080	250,540	339,620	427,200	339,620	427,200
	Registers	246,040	334,920	406,480	474,920	727,160	868,320	1,002,160	1,358,480	1,708,800	1,358,480	1,708,800
ces	M20K memory blocks	440	588	750	891	1,438	1,800	2,133	2,423	2,713	2,423	2,713
our	M20K memory (Mb)	9	11	15	17	28	35	42	47	53	47	53
Res	MLAB memory (Mb)	1.0	1.8	2.4	2.8	4.3	5.0	5.7	9.2	12.7	9.2	12.7
	Hardened single-precision floating-point multiplers/ adders	156/156	191/191	830/830	985/985	1,368/1,368	1,523/1,523	1,688/1,688	1,518/1,518	1,518/1,518	1,518/1,518	1,518/1,51
	18 x 19 multipliers	312	382	1,660	1,970	2,736	3,046	3,376	3,036	3,036	3,036	3,036
	Peak fixed-point performance (GMACS) ¹	343	420	1,826	2,167	3,010	3,351	3,714	3,340	3,340	3,340	3,340
	Peak floating-point performance (GFLOPS)	140	172	747	887	1,231	1,371	1,519	1,366	1,366	1,366	1,366
<u>_</u>												

View device ordering codes on page 44.

INTEL ARRIA 10 Soc FEATURES

PRODU	CT LINE	SX 160	SX 220	SX 270	SX 320	SX 480	SX 570	SX 660			
	Part number reference	10AS016	10AS022	10AS027	10AS032	10AS048	10AS057	10AS066			
	LEs (K)	160	220	270	320	480	570	660			
	System Logic Elements (K)	210	288	354	419	629	747	865			
	ALMs	61,510	83,730	101,620	118,730	181,790	217,080	250,540			
6	Registers	246,040	334,920	406,480	474,920	727,160	868,320	1,002,160			
rce	M20K memory blocks	440	588	750	891	1,438	1,800	2,133			
Resources	M20K memory (Mb)	9	11	15	17	28	35	42			
Re	MLAB memory (Mb)	1.0	1.8	2.4	2.8	4.3	5.0	5.7			
	Hardened single-precision floating-point multiplers/ adders	156/156	191/191	830/830	985/985	1,368/1,368	1,523/1,523	1,688/1,688			
	18 x 19 multipliers	312	382	1,660	1,970	2,736	3,046	3,376			
	Peak fixed-point performance (GMACS) ¹	343	420	1,826	2,167	3,010	3,351	3,714			
	Peak floating-point performance (GFLOPS)	140	172	747	887	1,231	1,371	1,519			
	Global clock networks	32	32	32	32	32	32	32			
	Regional clocks	8	8	8	8	8	8	16			
	I/O voltage levels supported (V)				1.2, 1.25, 1.35, 1.8,	2.5, 3.0					
I/O Pins, a Features	I/O standards supportedAll I/Os: 1.8 V CMOS, 1.5 V CMOS, 1.2 V CMOS, SSTL-135, SSTL-125, SSTL-18 (1 and II), SSTL-15 (I and II), SSTL-12, HSTL-18 (I and II), HSTL-15 (I and II), HSTL-12 (I and II), HSUL-12, Differential SSTL-135, Differential SSTL-125, Differential SSTL-125, Differential SSTL-125, Differential SSTL-15 (I and II), Differential SSTL-15 (I and II), Differential SSTL-12, Differential HSTL-18 (I and II), Differential HSTL-12 (I and II), Different										
ral ral					Differential HSUL-12						
kimum ectural	Maximum LVDS channels (1.6 G)	120	120	168	Differential HSUL-12 168	222	270	270			
Maximum hitectural	Maximum LVDS channels (1.6 G) Maximum user I/O pins	120 288	120 288	168 384			270 696	270			
:ks, Maximum Architectural					168	222					
Clocks, Maximum Architectural	Maximum user I/O pins	288	288	384	168 384	222 492	696	696			
Clocks, Maximum I, Architectural F	Maximum user I/O pins Transceiver count (17.4 Gbps)	288	288 12	384	168 384 24	222 492	696 48	696			
Clocks, Maximum Architectural	Maximum user I/O pins Transceiver count (17.4 Gbps) Transceiver count (25.78 Gbps)	288 12 -	288 12 -	384 24 -	168 384 24 -	222 492 36 -	696 48 -	696 48 -			
Clocks, Maximum Architectural	Maximum user I/O pins Transceiver count (17.4 Gbps) Transceiver count (25.78 Gbps) PCI Express hardened IP blocks (Gen3 x8)	288 12 - 1	288 12 - 1 48	384 24 - 2	168 384 24 - 2 48	222 492 36 - 2 48	696 48 - 2 48	696 48 - 2 48			
Clocks, Maximum Architectural	Maximum user I/O pinsTransceiver count (17.4 Gbps)Transceiver count (25.78 Gbps)PCI Express hardened IP blocks (Gen3 x8)Maximum 3 V I/O pins	288 12 - 1 48	288 12 - 1 48 DDR4, DDR3, DDR2, 0	384 24 - 2 48 QDR IV, QDR II+, QDR II	168 384 24 - 2 48	222 492 36 - 2 48	696 48 - 2 48	696 48 - 2 48			
Clocks, Maximum Architectural	Maximum user I/O pinsTransceiver count (17.4 Gbps)Transceiver count (25.78 Gbps)PCI Express hardened IP blocks (Gen3 x8)Maximum 3 V I/O pinsMemory devices supported	288 12 - 1 48	288 12 - 1 48 DDR4, DDR3, DDR2, 0	384 24 - 2 48 QDR IV, QDR II+, QDR II	168 384 24 - 2 48	222 492 36 - 2 48	696 48 - 2 48	696 48 - 2 48			
Clocks, Maximum Backash Architectural	Maximum user I/O pins Transceiver count (17.4 Gbps) Transceiver count (25.78 Gbps) PCI Express hardened IP blocks (Gen3 x8) Maximum 3 V I/O pins Memory devices supported e Options ² and I/O Pins ³ : General-Purpose I/O (GPIO) Count, I	288 12 - 1 48 High-Voltage I/O Count,	288 12 - 1 48 DDR4, DDR3, DDR2, 0 LVDS Pairs ⁴ , and Trans	384 24 - 2 48 QDR IV, QDR II+, QDR II	168 384 24 - 2 48 + Xtreme, LPDDR3, LP	222 492 36 - 2 48	696 48 - 2 48	696 48 - 2 48			
Clocks, Maximum Backase Architectural	Maximum user I/O pins Transceiver count (17.4 Gbps) Transceiver count (25.78 Gbps) PCI Express hardened IP blocks (Gen3 x8) Maximum 3 V I/O pins Memory devices supported e Options ² and I/O Pins ³ : General-Purpose I/O (GPIO) Count, I U484 pin (19 mm)	288 12 - 1 48 High-Voltage I/O Count, 192, 48, 72, 6	288 12 1 48 DDR4, DDR3, DDR2, 0 LVDS Pairs ⁴ , and Trans 192, 48, 72,6	384 24 - 2 48 QDR IV, QDR II+, QDR II sceiver Count -	168 384 24 - 2 48 + Xtreme, LPDDR3, LP	222 492 36 - 2 48	696 48 - 2 48	696 48 - 2 48			
Clocks, Maximum Dackage D19 F27	Maximum user I/O pins Transceiver count (17.4 Gbps) Transceiver count (25.78 Gbps) PCI Express hardened IP blocks (Gen3 x8) Maximum 3 V I/O pins Memory devices supported Poptions ² and I/O Pins ³ : General-Purpose I/O (GPIO) Count, I U484 pin (19 mm) F672 pin (27 mm)	288 12 - 1 48 High-Voltage I/O Count, 192, 48, 72, 6 240, 48, 96, 12	288 12 1 48 DDR4, DDR3, DDR2, 0 LVDS Pairs ⁴ , and Trans 192, 48, 72,6 240, 48, 96, 12	384 24 - 2 48 2DR IV, QDR II+, QDR II sceiver Count - 240, 48, 96, 12	168 384 24 - 2 48 + Xtreme, LPDDR3, LP - 240, 48, 96, 12	222 492 36 - 2 48 DDR2, RLDRAM 3, RL -	696 48 - 2 48 DRAM II, LLDRAM II, H -	696 48 - 2 48			
Package U19 F27 F29	Maximum user I/O pins Transceiver count (17.4 Gbps) Transceiver count (25.78 Gbps) PCI Express hardened IP blocks (Gen3 x8) Maximum 3 V I/O pins Memory devices supported COptions ² and I/O Pins ³ : General-Purpose I/O (GPIO) Count, I U484 pin (19 mm) F672 pin (27 mm) F780 pin (29 mm)	288 12 - 1 48 High-Voltage I/O Count, 192, 48, 72, 6 240, 48, 96, 12 288, 48, 120, 12	288 12 1 48 DDR4, DDR3, DDR2, 0 LVDS Pairs ⁴ , and Trans 192, 48, 72,6 240, 48, 96, 12 288, 48, 120, 12	384 24 2 48 2DR IV, QDR II+, QDR II sceiver Count - 240, 48, 96, 12 360, 48, 156, 12	168 384 24 - 2 48 + Xtreme, LPDDR3, LP - 240, 48, 96, 12 360, 48, 156, 12	222 492 36 - 2 48 DDR2, RLDRAM 3, RL - - 360, 48, 156, 12	696 48 2 48 DRAM II, LLDRAM II, H - - -	696 48 - 2 48 MC - - -			
Package U19 F27 F29 F34	Maximum user I/O pins Transceiver count (17.4 Gbps) Transceiver count (25.78 Gbps) PCI Express hardened IP blocks (Gen3 x8) Maximum 3 V I/O pins Memory devices supported e Options ² and I/O Pins ³ : General-Purpose I/O (GPIO) Count, I U484 pin (19 mm) F672 pin (27 mm) F780 pin (29 mm) F1152 pin (35 mm)	288 12 1 48 High-Voltage I/O Count, 192, 48, 72, 6 - 240, 48, 96, 12 -	288 12 1 48 DDR4, DDR3, DDR2, 0 LVDS Pairs ⁴ , and Trans 192, 48, 72,6 240, 48, 96, 12 288, 48, 120, 12	384 24 - 2 48 2DR IV, QDR II+, QDR II sceiver Count - 240, 48, 96, 12 360, 48, 156, 12 384, 48, 168, 24	168 384 24 - 2 48 + Xtreme, LPDDR3, LP - 240, 48, 96, 12 360, 48, 156, 12 384, 48, 168, 24	222 492 36 - 2 48 DDR2, RLDRAM 3, RL - 360, 48, 156, 12 492, 48, 222, 24	696 48 2 48 DRAM II, LLDRAM II, H - - 492, 48, 222, 24	696 48 2 48 MC - 492, 48, 222, 24			

Notes:

1. Fixed-point performance assumes the use of pre-adders.

2. All packages are ball grid arrays with 1.0 mm pitch, except for U19 (U484), which is 0.8 mm pitch.

3. A subset of pins for each package are used for 3.3 V and 2.5 V interfaces.

4. Each LVDS pair can be configured as either a differential input or a differential output.

5. Certain packages might not bond out all PCI Express hard IP blocks.

6. All data is correct at the time of printing, and may be subject to change without prior notice. For the latest information, please visit www.intel.com/fpga.

[192, 48, 72, 6] Numbers indicate GPIO count, high-voltage I/O count, LVDS pairs, and transceiver count.

Indicates pin migration.

View device ordering codes on page 44.

	HARD PROCESSOR SYSTEM (HPS)
Processor	Dual-core ARM Cortex-A9 MPCore processor
Maximum processor frequency	1.2 -1.5 GHz ¹
Processor cache and co- processors	 L1 instruction cache (32 KB) L1 data cache (32 KB) Level 2 cache (512 KB) shared FPU single and double precision ARM Neon media engine ARM CoreSight debug and trace technology Snoop control unit (SCU) Acceleration coherency port (ACP)
Scratch pad RAM	256 KB
HPS DDR memory	DDR4 and DDR3 (Up to 64 bit with ECC)
DMA controller	8 channels
EMAC	3X 10/100/1000 EMAC with integrated DMA
USB OTG controller	2X USB OTG with integrated DMA
UART controller	2X UART 16550 compatible
SPI controller	4X SPI
I ² C controller	5X I ² C
Quad SPI flash controller	1X SIO, DIO, QIO SPI flash supported
SD/SDIO/MMC controller	1X eMMC 4.5 with DMA and CE-ATA support
NAND flash controller	1X ONFI 1.0 or later8 and 16 bit support
General-purpose timers	7X
Software-programmable GPIOs	Maximum 54 GPIOs
Direct shared I/Os	48 I/Os to connect HPS peripherals directly to I/O
Watchdog timers	4X
Security	Secure boot, AES, and secure hash algorithm

Notes:

1. With overdrive feature.

INTEL CYCLONE 10 FPGA OVERVIEW

Intel Cyclone 10 FPGAs deliver cost and power savings over previous generations of Intel Cyclone FPGAs. Intel Cyclone 10 GX FPGAs

INTEL CYCLONE 10 GX FPGA FEATURES

View device ordering codes on page 45.

PRO	DUCT LINE	10CX085	10CX105	10CX150	10CX220
	Logic elements (LEs) ¹	85,000	104,000	150,000	220,000
	Adaptive logic modules (ALMs)	31,000	38,000	54,770	80,330
	ALM registers	124,000	152,000	219,080	321,320
	M20K memory blocks	291	382	475	587
ces	M20K memory size (Kb)	5,820	7,640	9,500	11,740
Resources	MLAB memory size (Kb)	653	799	1,152	1,690
Res	Variable-precision digital signal processing (DSP) blocks	84	125	156	192
	18 x 19 multipliers	168	250	312	384
	Peak fixed-point peformance (GMACS) ²	151	225	281	346
	Peak floating-point performance (GFLOPS) ³	59	88	109	134
res	Global clock networks	32	32	32	32
Features	Regional clocks	8	8	8	8
	Maximum user I/O pins	192	284	284	284
ctura	Maximum LVDS pairs 1.4 Gbps (RX or TX)	72	118	118	118
Architectural	Maximum transceiver count (12.5 Gbps)	6	12	12	12
	Maximum 3V I/O pins	48	48	48	48
and	PCI Express hard IP blocks (Gen2 x4) ⁴	1	1	1	1
0/1	Memory devices supported		DDR3, DDR3	L, LPDDR3	

Package Options and I/O Pins: General-Purpose I/O (GPIO) Count, 3V I/O Count, LVDS Pairs, Total Transceiver count⁵

U484 pin (19 mm x 19 mm, 0.8 mm pitch)	188, 48, 70, 6	188, 48, 70, 6	188, 48, 70, 6	188, 48, 70, 6
F672 pin (27 mm x 27 mm, 1.0 mm pitch)	192, 48, 72, 6	236, 48, 94, 10	236, 48, 94, 10	236, 48, 94, 10
F780 pin (29 mm x 29 mm, 1.0 mm pitch)		284, 48, 118, 12	284, 48, 118, 12	284, 48, 118, 12

Notes:

1. LE counts valid in comparing across Intel devices, and are conservative versus competing FPGAs.

2. Fixed-point performance assumes the use of pre-adders.

3. Floating-point performance is IEEE-754 compliant single-precision.

4. Hard PCI Express IP core x2 in U484 package

5. Each LVDS pair can be configured as either a differential input or differential output.

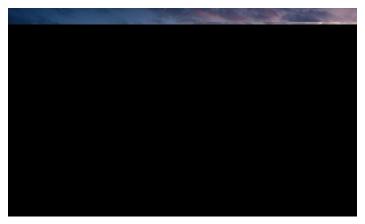
6. A subset of pins for each package are used for high-voltage 3.0 V and 2.5 V interfaces.

7. All data is correct at the time of printing and may be subject to change without prior notice. For the latest information, please visit www.intel.com/fpga.

284,48,118,12 Numbers indicate GPIO count, 3V I/O count, LVDS pairs, total transceiver count.

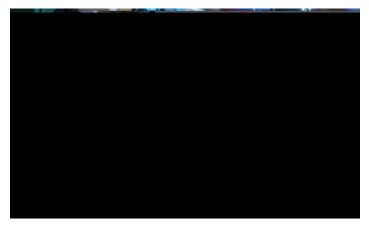
Indicates pin migration path.

RODUCT LINE	10CL006	10CL010	10CL016	10CL025	E010	

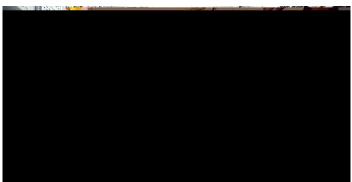

INTEL MAX 10 FPGA OVERVIEW

Intel MAX 10 FPGAs revolutionize non-volatile integration by delivering advanced processing capabilities in a low-cost, instant-on, small form factor, programmable logic device.

Intel MAX 10 FPGAs are built on TSMC's 55 nm flash technology, enabling instant-on configuration so you can quickly control the power-up or initialization of other components in the system. The devices also include full-featured FPGA capabilities, such as DSP, analog functionality, Nios II Gen2 embedded soft processor support, and memory controllers.


With a robust set of FPGA capabilities, Intel MAX 10 FPGAs are optimized for a wide range of high-volume, cost-sensitive applications, including:

Automotive


- Built on TSMC's 55 nm high-volume flash process tailored for the automotive industry's rigorous safety and quality requirements
- Integrated flash provides instant-on behavior for applications requiring fast boot times such as rear-view cameras in advanced driver assistance systems (ADAS) and infotainment displays
- FPGA-class signal processing acceleration for electric vehicle (EV) applications, such as motor control, battery management, and power conversion

Industrial

- Reduced footprint, increased design security and reliability, and lower system cost
- Accurate environmental condition sensing and efficient real-time controls for motor control, I/O modules, and Internet of Things (IoT) applications
- Single-chip support for multiple industrial Ethernet protocols and machine-to-machine (M2M) communication

Communications

- Analog functionality for sensing board environment allows integration of power-up sequencing and system-monitoring circuitry in a single device
- High I/O count and software-based system management using the Nios II soft processor enable board management integration in an advanced, reliable, single-chip system controller

INTEL MAX 10 FPGA FEATURES

View device ordering codes on page 45.

PRODUCT LINE	10M02	10M04	10M08	10M16	10M25	10M40	10M50
LEs (K)	2	4	8	16	25	40	50
Block memory (Kb)	108	189	378	549	675	1,260	1,638
User flash memory ¹ (KB)	12	16 – 156	32 – 172	32 – 296	32 – 400	64 – 736	64 – 736
18 x 18 multipliers	16	20	24	45	55	125	144
PLLs ²	1, 2	1, 2	1, 2	1,4	1, 4	1, 4	1, 4
Internal configuration	Single	Dual	Dual	Dual	Dual	Dual	Dual
Analog-to-digital converter (ADC), temperature sensing diode (TSD)³	-	1, 1	1, 1	1, 1	2, 1	2, 1	2, 1
External memory interface (EMIF)	Yes ⁴	Yes⁴	Yes ⁴	Yes⁵	Yes⁵	Yes⁵	Yes⁵

Package Options and I/O Pins: Feature Set Options, GPIO, True LVDS Transceiver/Receiver

V36 (D) ⁶	WLCSP (3 mm, 0.4 mm pitch)	C, 27, 3/7	-	-	-	-	-	-
V81 (D) ⁷	WLCSP (4 mm, 0.4 mm pitch)	-	-	C/F, 56, 7/17	_	-	-	-
F256 (D)	FBGA (17 mm, 1.0 mm pitch)	-	C/A, 178, 13/54	C/A, 178, 13/54	C/A, 178, 13/54	C/A, 178, 13/54	C/A, 178, 13/54	C/A, 178, 13/54
U324 (D)	UBGA (15 mm, 0.8 mm pitch)	C, 160, 9/47	C/A, 246, 15/81	C/A, 246, 15/81	C/A, 246, 15/81	-	-	-
F484 (D)	FBGA (23 mm, 1.0 mm pitch)	-	-	C/A, 250, 15/83	C/A, 320, 22/116	C/A, 360, 24/136	C/A, 360, 24/136	C/A, 360, 24/136
F672 (D)	FBGA (27 mm, 1.0 mm pitch)	-	-	-	-	-	C/A, 500, 30/192	C/A, 500, 30/192
E144 (S)6	EQFP (22 mm, 0.5 mm pitch)	C, 101, 7/27	C/A, 101, 10/27	C/A, 101, 10/27	C/A, 101, 10/27	C/A, 101, 10/27	C/A, 101, 10/28	C/A, 101, 10/28
M153 (S)	MBGA (8 mm, 0.5 mm pitch) ⁸	C, 112, 9/29	C/A, 112, 9/29	C/A, 112, 9/29	-	-	-	-
U169 (S)	UBGA (11 mm, 0.8 mm pitch)	C, 130, 9/38	C/A, 130, 9/38	C/A, 130, 9/38	C/A, 130, 9/38	-	_	-
U324 (S)	UBGA (15 mm, 0.8 mm pitch)	C, 246, 15/81	C/A, 246, 15/81	C/A, 246, 15/81	C/A, 246, 15/81			

Notes:

1. Additional user flash may be available, depending on configuration options.

2. The number of PLLs available is dependent on the package option.

3. Availability of the ADC or TSD varies by package type. Smaller pin-count packages do not have access to the ADC hard IP.

4. SRAM only.

5. SRAM, DDR3 SDRAM, DDR2 SDRAM, or LPDDR2.

6. "D" = Dual power supply (1.2 V/2.5 V), "S" = Single power supply (3.3 V or 3.0 V).

7. V81 package does not support analog feature set. 10M08 V81 F devices support dual image with RSU.

8. "Easy PCB" utilizes 0.8 mm PCB design rules.

9. All data is correct at the time of printing, and may be subject to change without prior notice. For the latest information, please visit www.intel.com/fpga.

C, 27, 3/7 Indicates feature set options, GPIO count, and LVDS transmitter or receiver count. Feature set options: C = Compact (single image), F = Flash (dual image with RSU), A = Analog (analog features block). Each has added premiums.

Indicates pin migration.

STRATIX V FPGA FEATURES

PRODUCT LINE	STR	ATIX V GS FPO	5As ¹		,	STRATIX V C	SX FPGAs		
·!									

ARRIA V FPGA AND SoC FEATURES

									·
									·
									<u> </u>
 		 	 		 · · · · · · · · · · · · · · · · · · ·		 		

CYCLONE V FPGA FEATURES

PRODUCT LINE			CYCLONE V E FPGA	S ¹			С	YCLONE V GX FPGA	S ¹			CYCLONE V GT FPG	AS ¹
PRODUCT LINE	5CEA2	5CEA4	5CEA5	5CEA7	5CEA9	5CGXC3	5CGXC4	5CGXC5	5CGXC7	5CGXC9	5CGTD5	5CGTD7	5CGTD9
LEs (K)	25	49	77	149.5	301	35.5	50	77	149.5	301	77	149.5	301
ALMs	9,434	18,480	29,080	56,480	113,560	13,460	18,868	29,080	56,480	113,560	29,080	56,480	113,560
n Registers	37,736	73,920	116,320	225,920	454,240	53,840	75,472	116,320	225,920	454,240	116,320	225,920	454,240
M10K memory blocks	176	308	446	686	1,220	135	250	446	686	1,220	446	686	1,220
M10K memory (Kb)	1,760	3,080	4,460	6,860	12,200	1,350	2,500	4,460	6,860	12,200	4,460	6,860	12,200
MLAB memory (Kb)	196	303	424	836	1,717	291	295	424	836	1,717	424	836	1,717
Variable-precision DSP blocks	25	66	150	156	342	57	70	150	156	342	150	156	342
18 x 18 multipliers	50	132	300	312	684	114	140	300	312	684	300	312	684
Global clock networks	16	16	16	16	16	16	16	16	16	16	16	16	16
PLLs ² (FPGA)	4	4	6	7	8	4	6	6	7	8	6	7	8
I/O voltage levels supported (V)						-	1.1, 1.2, 1.5, 1.8, 2.5,	3.3					
I/O standards supported													
तुर्हे LVDS channels (receiver/transmitter)	56/56	56/56	60/60	120/120	120/120	52/52	84/84	84/84	120/120	140/140	84/84	120/120	140/140
Transceiver count (3.125 Gbps)	- 50/50		-	-	-	3	6	6	9	140/140		-	- 140/140
Transceiver count (6.144 Gbps) ³		_	_	_	_	-	-	-		-	64	94	124
PCI Express hardened IP blocks (Gen1) ⁵						1	2	2	2	2			
4	-	_	-	-	-		2				-	-	-
PCI Express hardened IP blocks (Gen2)	-	-	-	-	-	-	-	-	-	-	2	2	2
Hard memory controllers ⁶ (FPGA) Memory devices supported	1	1	2	2	2	1	2 DDR3, DDR2, LPDDF	2	2	2	2	2	2
kage Options and I/O Pins: GPIO Count, High-Volta	ge I/O Count, LVDS Pair	s, and Transceiver Co	ount										
301 pin I mm, 0.5 mm pitch)							129 4	129 4			129 4		
	222	223	175				175	175			175		
383 pin	223	223	1/5				6	175 6			175 6		
3 mm, 0.5 mm pitch)								-					
184 pin 5 mm, 0.5 mm pitch)				240					240 3			240 3	
24 min	176	176				144							
324 pin 5 mm, 0.8 mm pitch)						3							
	224	224	224	240	240	200	224	22.4	2.40	2.40	224	2.40	2.40
184 pin	224	224	224	240	240	208	224 6	224 6	240 6	240	224 6	240 6	240
9 mm, 0.8 mm pitch)							0	0	0			0	
56 pin	128	128											
7 mm, 1.0 mm pitch)													
84 pin	224	224	240	240	224	208	240	240	240	224	240	240	224
3 mm, 1.0 mm pitch)						3	6	6	6	6	6	6	6
	-			336	336		336	336	336	336	336	336	336
72 pin 7 mm, 1.0 mm pitch)							6	6	9	9	6	9	9
96 pin				480	480				480	480		480	480
1 mm, 1.0 mm pitch)									9	12		9	12
152 pin										560 12			560 12
5 mm, 1.0 mm pitch)													

1. All data is correct at the time of printing, and may be subject to change without prior notice. For the latest information, please visit www.intel.com/fpga.

2. The PLL count includes general-purpose fractional PLLs and transceiver fractional PLLs.

3. Automotive grade Cyclone V GT FPGAs include a 5 Gbps transceiver.

4. Transceiver counts shown are for ≤ 5 Gbps. The 6 Gbps channel count support depends on package and channel usage.

CYCLONE V Soc FEATURES

		CYCLONE	V SE SoCs ¹			CYCLONE	V SX SoCs ¹		CYCLON	E V ST SoCs ¹
ODUCT LINE	5CSEA2	5CSEA4	5CSEA5	5CSEA6	5CSXC2	5CSXC4	5CSXC5	5CSXC6	5CSTD5	5CSTD6
LEs (K)	25	40	85	110	25	40	85	110	85	110
ALMs	9,434	15,094	32,075	41,509	9,434	15,094	32,075	41,509	32,075	41,509
Registers	37,736	60,376	128,300	166,036	37,736	60,376	128,300	166,036	128,300	166,036
M10K memory blocks	140	270	397	557	140	270	397	557	397	557
M10K memory (Kb)	1,400	2,700	3,970	5,570	1,400	2,700	3,970	5,570	3,970	5,570
MLAB memory (Kb)	138	231	480	621	138	231	480	621	480	621
Variable-precision DSP blocks	36	84	87	112	36	84	87	112	87	112
18 x 18 multipliers	72	168	174	224	72	168	174	224	174	224
Processor cores (ARM Cortex-A9)	Single or dual	Single or dual	Single or dual	Single or dual	Dual	Dual	Dual	Dual	Dual	Dual
Maximum CPU clock frequency (MHz)	925	925	925	925	925	925	925	925	925	925
Global clock networks	16	16	16	16	16	16	16	16	16	16
PLLs ² (FPGA)	5	5	6	6	5	5	6	6	6	6
PLLs (HPS)	3	3	3	3	3	3	3	3	3	3
I/O voltage levels supported (V)					1.1, 1.2,	1.5, 1.8, 2.5,3.3				
I/O standards supported	Dif	ل ferential SSTL-18 (I and I	VTTL, LVCMOS, PCI, PCI- I), Differential SSTL-15 (I	X, LVDS, mini-LVDS, RSDS, and II), Differential SSTL-2	LVPECL, SSTL-18 (1 and (1 and II), Differential HST	II), SSTL-15 (I and II), SSTL L-18 (I and II), Differential	2 (I and II), HSTL-18 (I and HSTL-15 (I and II), Different	II), HSTL-15 (I and II), HS ial HSTL-12 (I and II), Diff	TL-12 (I and II), erential HSUL-12, HiSpi, SL	VS, Sub-LVDS
LVDS channels (receiver/transmitter)	37/32	37/32	72/72	72/72	37/32	37/32	72/72	72/72	72/72	72/72
Transceiver count (3.125 Gbps)	-	-	-	-	6	6	9	9	-	_
Transceiver count (6.144 Gbps)	-	-	-	-	_	-	-	_	9 ³	9 ³
PCI Express hardened IP blocks (Gen1)	-	-	-	-	2	2	24	24	-	_
PCI Express hardened IP blocks (Gen2)	-	-	-	-	-	-	-	_	2	2
GPIOs (FPGA)	145	145	288	288	145	145	288	288	288	288
GPIOs (HPS)	181	181	181	181	181	181	181	181	181	181
Hard memory controllers⁵ (FPGA)	1	1	1	1	1	1	1	1	1	1
Hard memory controllers⁵ (HPS)	1	1	1	1	1	1	1	1	1	1
Memory devices supported		_			DDR3, I	DDR2, LPDDR2				

Package Options and I/O Pins: General-Purpose I/O (GPIO) Count, High-Voltage I/O Count, LVDS Pairs, and Transceiver Count

U484 pin (19 mm, 0.8 mm pitch)	66, 151 0	66, 151 0	66, 151 0	66, 151 0			
U672 pin (23 mm, 0.8 mm pitch)	145, 181 0	145, 181 0	145, 181 0	145, 181 0	145, 181 6	145, 181 6	145, 181 6
F896 pin (31 mm, 1.0 mm pitch			288, 181 0	288, 181 0			288, 181 9

Notes:

1. All data is correct at the time of printing, and may be subject to change without prior notice. For the latest information, please visit www.intel.com/fpga.

2. The PLL count includes general-purpose fractional PLLs and transceiver fractional PLLs.

3. Transceiver counts shown are for \leq 5 Gbps.

The 6 Gbps channel count support depends on package and channel usage.

Refer to Cyclone V Device Handbook Volume 2: Transceivers for guidelines.

4. One PCI Express hard IP block in U672 package.

5. With 16 and 32 bit ECC support.

For SoCs: Pin migration is only possible if you use only up to 138 GPIOs.

-

View device ordering codes on page 48.

288, 181	288, 181
9	9
	288, 181 9

66, 151 0 Values on top indicate available FPGA user I/O pins and HPS I/O pins; values at the bottom indicate the 3.125 Gbps or 5 Gbps transceiver count.

---- Pin migration (same V_{rr}, GND, ISP, and input pins). User I/O pins may be less than labelled for pin migration.

STRATIX IV FPGA FEATURES

ARRIA II GZ AND GX FPGA FEATURES

RODUCT LINE		ARRIA II GZ FPGAS ¹			ARRIA II GX FPGAS ¹					
	EP2AGZ225	EP2AGZ300	EP2AGZ350	EP2AGX45	EP2AGX65	EP2AGX95	EP2AGX125	EP2AGX190	EP2AGX260	
LEs (K)	224	298	349	43	60	89	118	118	244	
ALMs	89,600	119,200	139,400	18,050	25,300	37,470	49,640	76,120	102,600	
Registers ²	179,200	238,400	278,800	36,100	50,600	74,940	99,280	152,240	205,200	
M9K memory blocks	1,235	1,248	1,248	319	495	612	730	840	950	
M144K memory blocks	0	24	36	-	-	-	-	-	-	
MLAB memory (Kb)	2,850	4,420	4,420	564	791	1,171	1,551	2,379	3,206	
Embedded memory (Kb)	11,115	14,688	16,416	2,871	4,455	5,508	6,570	7,560	8,550	
18 x 18 multipliers	800	920	1,040	232	312	448	576	656	736	
Global clock networks	16	16	16	16	16	16	16	16	16	
Regional clock networks	64	88	88	48	48	48	48	48	48	
Periphery clock networks	88	88	88	50	50	59	59	84	84	
PLLs	8	8	8	4	4	6	6	6	6	
I/O voltage levels supported (V)					1.2, 1.5, 1.8, 2.5, 3.0,3.	3				
I/O standards supported	LVTTL, LVC	MOS, PCI, PCI-X, LVDS, m Differential SSTI	nini-LVDS, RSDS, LVPECL, L-15 (I and II), Differential	SSTL-18 (1 and II), SSTL-1 SSTL-2 (I and II), Different	I 5 (I and II), SSTL-2 (I and II ial HSTL-18 (I and II), Differ	I), HSTL-18 (I and II), HSTL rential HSTL-15 (I and II), D	-15 (I and II), HSTL-12 (I an Differential HSTL-12 (I and	d II), Differential SSTL-18 ((II), Differential HSUL-12	I and II),	
Emulated LVDS channels, 945 Mbps	-	-	-	56	56	64	64	96	96	
Emulated LVDS channels, 1.152 Mbps	184	184	184	-	-	-	-	-	-	
LVDS channels, 1,250 Mbps (receive/transmit)	Up to 86	Up to 86	Up to 86	85/84	85/84	105/104	105/104	145/144	145/144	
Transceiver count (6.375 Gbps)	Up to 24	Up to 24	Up to 24	8	8	12	12	16	16	
PCI Express hardened IP blocks (Base specification, Rev 1.1, 2.0, and so on)	1	1	1	1	1	1	1	1	1	
Memory devices supported				DDR	3, DDR2, DDR, QDR II, RLDR	RAM 2, SDR				
ckage Options and I/O Pins: General-Purpose I/O (GPIO) Count, High-Voltage I/O	Count, LVDS Pairs, and Tr	ansceiver Count								
58 pin mm, 0.8 mm pitch)	-	-	-	156 4	156 4	-	-	-	-	
/2 pin mm, 1.0 mm pitch)	-	-	-	252 8	252 8	260 8	260 8	-	-	
30 pin mm, 1.0 mm pitch)	-	-	-	364 8	364 8	372 12	372 12	372 12	372 12	

281

16

_

_

_

_

_

_

_

_

_

281

16

F1152 pin	554	554	554
(35 mm, 1.0 mm pitch)	16	16	16
F1517 pin	734	734	734
(40 mm, 1.0 mm pitch)	24	24	24

Notes:

Hybrid F780 pin

(33 mm, 1.0 mm pitch)

1. All data is correct at the time of printing, and may be subject to change without prior notice. For the latest information, please visit www.intel.com/fpga.

2. The base core logic register count is shown. The ALM can support three registers when used in LUTREG mode, which increases the total register count by an additional 50%[†].

Values on top indicate available user I/O pins; values at the bottom indicate the 6.375 Gbps transceiver count.

-	_	-
260 8	-	-
372 12	372 12	372 12
-	_	-
-	-	-
-	_	-

CYCLONE IV GX AND E FPGA FEATURES

PRODUCT LINE		CYCLONE IV GX FPGAS ¹							CYCLONE IV E FPGAS ¹							
	EP4CGX15	EP4CGX22	EP4CGX30	EP4CGX50	EP4CGX75	EP4CGX110	EP4CGX150	EP4CE6	EP4CE10	EP4CE15	EP4CE22	EP4CE30	EP4CE40	EP4CE55	EP4CE75	EP4CE115
LEs (K)	14	21	29	50	74	109	150	6	10	15	22	29	40	56	75	114
M9K memory blocks	60	84	120	278	462	666	720	30	46	56	66	66	126	260	305	432
Embedded memory (Kb)	540	756	1,080	2,502	4,158	5,490	6,480	270	414	504	594	594	1,134	2,340	2,745	3,888
18 x 18 multipliers	0	40	80	140	198	280	360	15	23	56	66	66	116	154	200	266
Global clock networks	20	20	20	30	30	30	30	10	10	20	20	20	20	20	20	20
PLLs	3	4	4	8	8	8	8	2	2	4	4	4	4	4	4	4
I/O voltage levels supported (V)								1.2, 1.5, 1.8, 2	2.5, 3.3							
I/O standards supported		L	VTTL, LVCMOS,	PCI, PCI-X, LVDS, Differential S	mini-LVDS, RSDS, STL-15 (I and II), D	LVPECL, SSTL-18 ifferential SSTL-2	(1 and II), SSTL- (I and II), Differe	15 (I and II), SS ntial HSTL-18 (TL-2 (I and II), H I and II), Differe	ISTL-18 (I and II ntial HSTL-15 (I), HSTL-15 (I and and II), Differen	d II), HSTL-12 (I tial HSTL-12 (I a	and II), Different nd II), Differenti	tial SSTL-18 (I an al HSUL-12	ıd II),	
Emulated LVDS channels	9	40	40	73	73	139	139	66	66	137	52	224	224	160	178	230
LVDS channels, 840 Mbps (receive/transmit)	7/7	14/14	14/14	49/49	49/49	59/59	59/59	_	-	-	-	-	-	_	-	-
Transceiver count ² (2.5 Gbps/3.124 Gbps)	2/0	2, 0 / 4, 0	4, 0 / 0, 4 ³	0, 8	0, 8	0, 8	0, 8	_	-	-	-	-	-	_	-	-
PCI Express hardened IP blocks (Base specification, Rev 1.1, 2.0, and so on)	1	1	1	1	1	1	1	_	-	-	-	-	-	_	-	-
Memory devices supported								DDR2, DDR,	, SDR							
ckage Options and I/O Pins: General-Purpose I/O (C	GPIO) Count and Tr	ransceiver Count														
l 44 pin⁴ 2 mm, 0.5 mm pitch)	-	-	-	-	-	-	-	91	91	81	79	-	-	_	-	-
164 pin mm, 0.5 mm pitch)	-	-	-	-	-	-	-	-	-	90	-	-	-	-	-	-
256 pin mm, 0.5 mm pitch)	-	-	-	-	-	-	-	_	-	166	-	-	-	_	-	-
256 pin 4 mm, 0.8 mm pitch)	-	-	-	-	-	-	-	179	179	165	153	-	-	_	-	-
184 pin 9 mm, 0.8 mm pitch)	-	-	-	-	-	-	-	_	-	-	-	328	328	324	292	-
169 pin 4 mm, 1.0 mm pitch)	72 2	72 2	72 2	-	-	-	-	-	-	-	-	-	-	-	-	-
56 pin 7 mm, 1.0 mm pitch)	-	-	-	-	-	-	-	179	179	165	153	-	-	-	-	-
24 pin 9 mm, 1.0 mm pitch)	-	150 4	150 4	-	-	-	-	-	-	-	-	193	193 -	-	-	-
84 pin 3 mm, 1.0 mm pitch)			290 4	290 4	290 4	270 4	270 4	_	-	343	-	328	328	324	292	280
72 pin 7 mm, 1.0 mm pitch)	-	-	-	310 8	310 8	393 8	393 8	-	-	-	-	-	-	-	-	-
80 pin 9 mm, 1.0 mm pitch)	-	-	-	-	-	-	-	-	-	-	-	532	532	374	426	528
96 pin 1 mm, 1.0 mm pitch)	-	-	-	-	-	475 8	475 8	-	-	-	-	-	-	-	-	-

3. EP4CGX30 supports 3.125 Gbps transceivers only in F484 package option.

4. Enhanced thin quad flat pack (EQFP).

View device ordering codes on page 48.

CYCLONE III AND CYCLONE III LS FPGA FEATURES

MAX V AND MAX II CPLD FEATURES

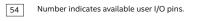
PRODUCT LINE				MAX V CPLDS ¹						MAX II	CPLDS ¹		
PRODUCT LINE	5M40Z	5M80Z	5M160Z	5M240Z	5M570Z	5M1270Z	5M2210Z	EPM240Z	EPM570Z	EPM240	EPM570	EPM1270	EPM2210
LEs	40	80	160	240	570	1,270	2,210	-	-	-	-	-	-
Equivalent macrocells ²	32	64	128	192	440	980	1,700	192	440	192	440	980	1,700
Pin-to-pin delay (ns)	7.5	7.5	7.5	7.5	9.0	6.2	7.0	4.7	5.4	7.5	9.0	6.2	7.0
User flash memory (Kb)	8	8	8	8	8	8	8	8	8	8	8	8	8
Logic convertible to memory ³	Yes	Yes	Yes	Yes	Yes	Yes	Yes	-	-	_	-	-	-
Internal oscillator	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	_	-	-	-
Digital PLLs ⁴	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	_	-	-	-
Fast power-on reset	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	-
Boundary-scan JTAG	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
JTAG ISP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fast input registers	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Programmable register power-up	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
JTAG translator	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Real-time ISP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√	\checkmark	√	\checkmark	\checkmark	\checkmark
MultiVolt I/Os (V)			1.2, 1.5, 1.8, 2.5, 3.3			1.2, 1.5, 1.8,	2.5. 3.3. 5.0⁵		1.5, 1.8,	2.5. 3.3		1.5, 1.8, 2	.5, 3.3, 5.0⁵
I/O power banks	2	2	2	2	2	4	4	2	2	2	2	4	4
Maximum output enables	54	54	79	114	159	271	271	80	160	80	160	212	272
LVTTL/LVCMOS	√	 ✓		√	√			 √	√	 √	√	 	
LVDS outputs	\checkmark	✓	√	\checkmark	\checkmark	~	\checkmark	_	_	_	_	_	_
32 bit, 66 MHz PCI compliant	_	_	_	_	_	√5	√5	_	_	_	_	√5	√5
Schmitt triggers	\checkmark	√	√	~	√	 ✓	√	√		~	√	 ✓	
Programmable slew rate	· · · · · · · · · · · · · · · · · · ·	 ✓	· · · · · · · · · · · · · · · · · · ·	 ✓	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 √	 ✓	 	 √	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 √
Programmable pull-up resistors	¥	 ✓	 √	¥	¥	 ✓	¥	¥	· · · · · · · · · · · · · · · · · · ·	 √	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	¥
Programmable GND pins	V	 ✓	 √	¥	¥	¥	v √	v √	v √	 	¥	 ✓	 √
Open-drain outputs	¥	 ✓	 √	¥	¥	v √	v √	v 	· ·	 ✓	¥	 ✓	v √
Bus hold	 ✓	 ✓	 ✓	 ✓	 √	v 	v √	 ✓	v √	 ✓	v √	v 	 ✓
	v	v	•	· ·	v	•	•	· ·	v	·	v	v	v
ckage Options and I/O Pins ⁶													
i4 pin	54	54	54	-	-	-	-	-	-	-	-	-	-
mm, 0.4 mm pitch)		70									7.0		
100 pin ⁷	-	79	79	79	74	-	-	-	-	80	76	-	-
6 mm, 0.5 mm pitch)				114	114	114				-	110	110	
144 pin ⁷ 2 mm, 0.5 mm pitch)	-	-	-	114	114	114	-	-	-	-	116	116	-
64 pin	30	30	_	_	_	_	_	_	_	_	_	_	
.5 mm, 0.5 mm pitch)	50	30	-	_	_	_	-	_	-	_	-	-	-
168 pin	_	52	52	52	_	_	_	54	_	_	_	_	_
mm, 0.5 mm pitch)													
100 pin	-	-	79	79	74	_	_	80	76	80	76	-	_
mm, 0.5 mm pitch)			-		-								
144 pin	_	-	-	-	-	_	-	-	116	-	-	-	-
mm, 0.5 mm pitch)													
256 pin	-	-	-	-	-	-	-	-	160	-	160	212	_
1 mm, 0.5 mm pitch)													
56 pin	-	-	-	-	-	-	-	-	-	-	-	-	-
4 mm, 0.8 mm pitch)													
100 pin	-	-	-	-	-	-	-	-	-	80	76	-	-
1 mm, 1.0 mm pitch)													
56 pin	-	-	-	-	159	211	204	-	-	-	160	212	204
7 mm, 1.0 mm pitch)													
324 pin	-	-	-	-	-	271	271	-	-	-	-	-	272

Notes:

1. All data is correct at the time of printing, and may be subject to change without prior notice. For the latest information, please visit www.intel.com/fpga.

2. Typical equivalent macrocells.

3. Unused LEs can be converted to memory. The total number of available LE RAM bits depends on the memory mode, depth, and width configurations of the instantiated memory.


4. Optional IP core.

5. An external resistor must be used for 5.0 V tolerance.

6. For temperature grades of specific packages (commercial, industrial, or extended

temperatures), refer to Intel's online selector guide.

7. Thin quad flat pack (TQFP).

Pin migration (same Vcc, GND, ISP, and input pins). User I/Os may be less than labelled for pin migration.

CONFIGURATION DEVICES

www.intel.com/fpgaconfiguration

The following information is an overview of our configuration devices. To determine the right configuration device for your FPGA, refer to the device datasheets and pin-out files available on the Documentation: Configuration Devices page.

Intel FPGA serial configuration devices store the configuration file for our SRAM-based FPGAs. We designed our serial configuration devices to minimize board space while providing a dedicated FPGA configuration solution. Serial configuration devices are recommended for new designs. For information on additional configuration devices supporting older products, refer to the device datasheets and pin-out files, available on the Documentation: Configuration Devices page.

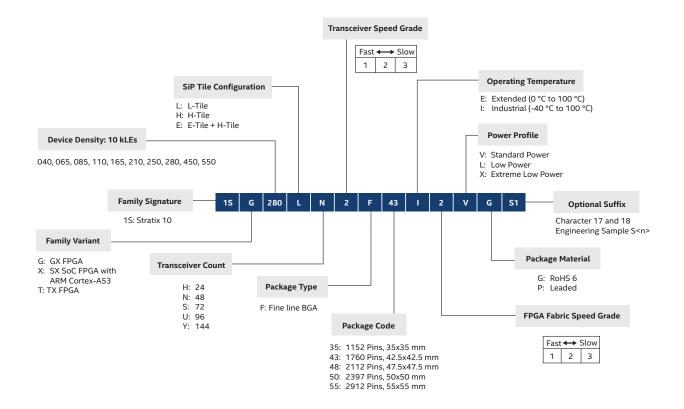
EPCQ-L SERIAL CONFIGURATION DEVICES FOR INTEL STRATIX 10, INTEL ARRIA 10, AND INTEL CYCLONE 10 GX FPGAS (1.8 V)

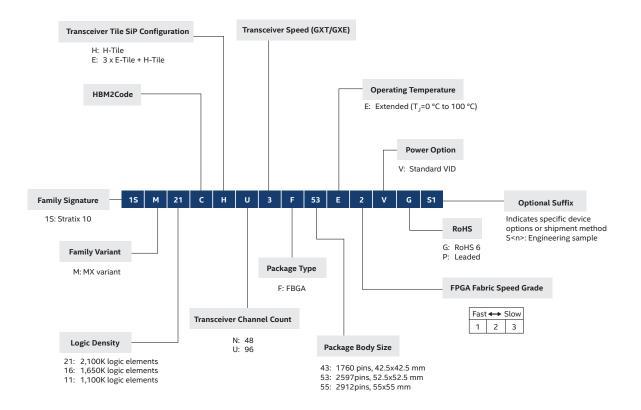
	FBGA						
	24 pin 6 x 8 (mm) 1.0-mm pitch						
EPCQL256	256						
EPCQL512	512						
EPCQL1024	1,024						

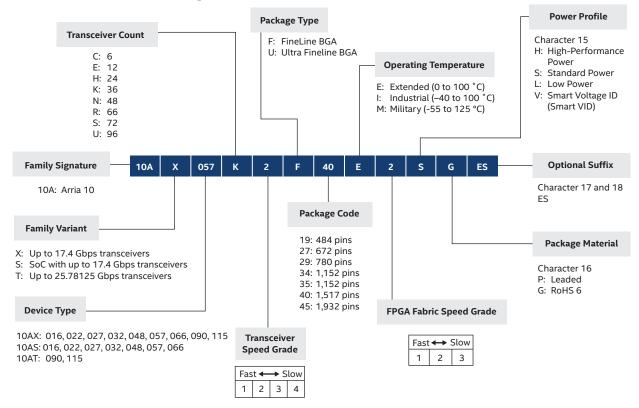
Notes:

512 Number indicates memory size in megabits (Mb).

Vertical migration (same V_{cc}, GND, ISP, and input pins).

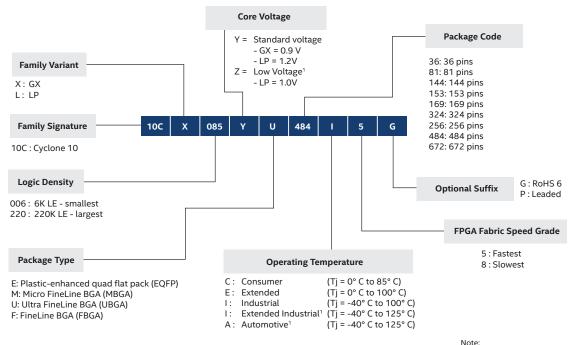

EPCQ SERIAL CONFIGURATION DEVICES FOR 28 NM AND PRIOR FPGAs (3.0-3.3 V)

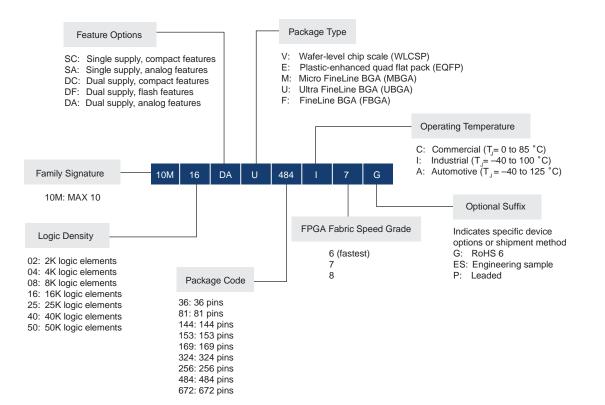

	SOIC								
	8 pin 4.9 x 6.0 (16 pin 10.3 x 10.3						
EPCQ4A	4								
EPCQ16/A	16								
EPCQ32/A	32								
EPCQ64/A			64						
EPCQ128/A			128						
ECPQ256			256						
EPCQ512A			512						

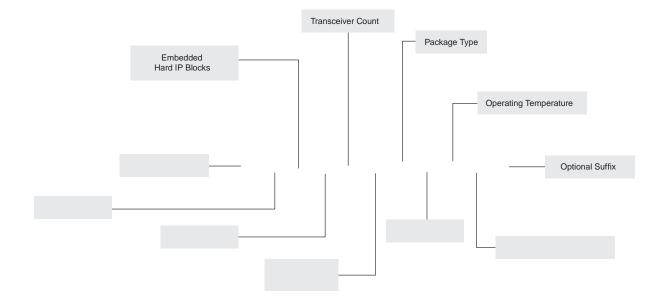

Notes:

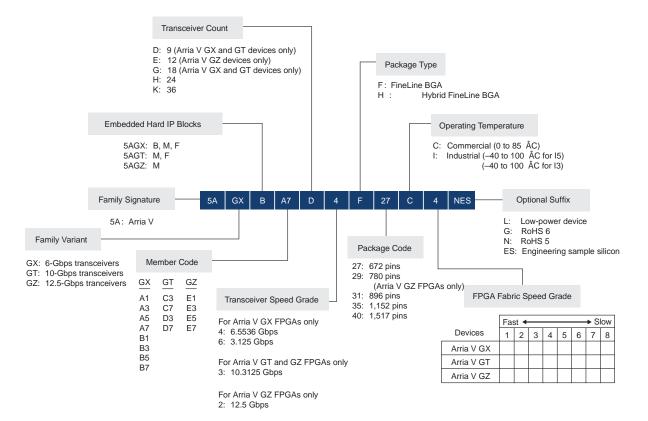
512 Number indicates memory size in megabits (Mb).

Vertical migration (same V_{cc}, GND, ISP, and input pins).

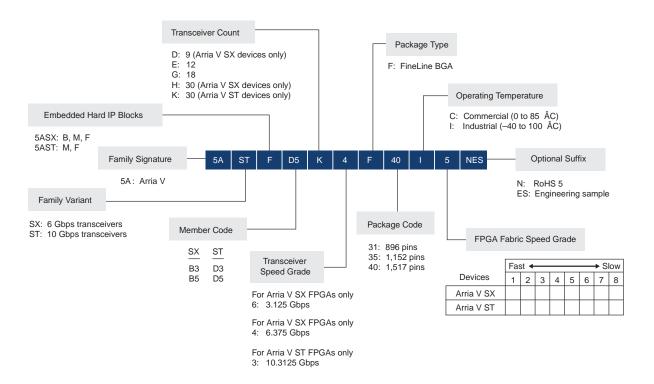


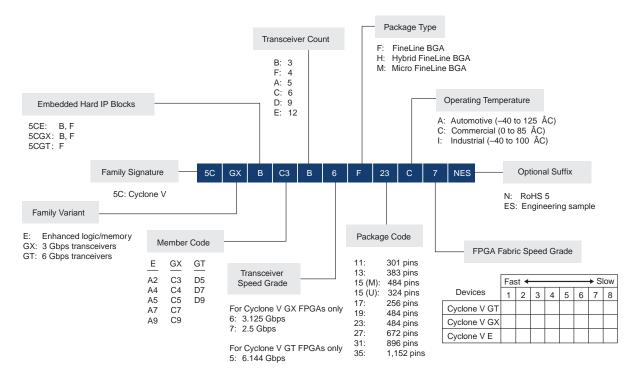



Ordering Information for Intel Arria 10 (GX, SX, GT) Devices

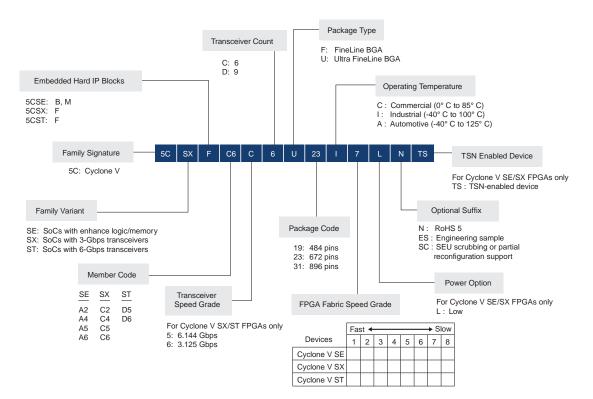

Ordering Information for Intel Cyclone 10 Devices

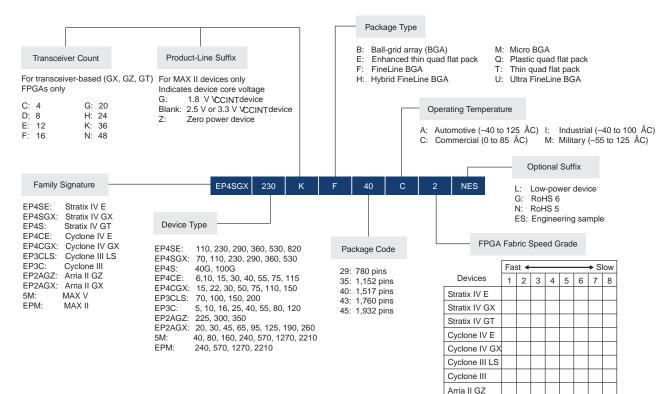
1. Only available on Cyclone 10 LP

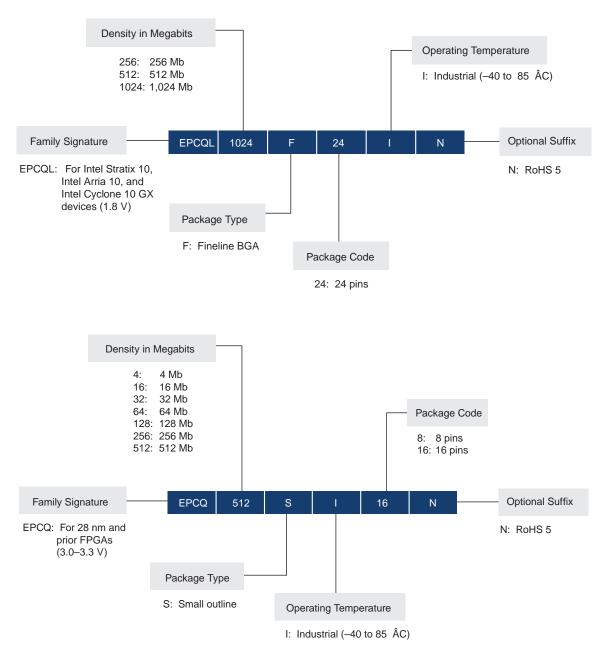




Ordering Information for Arria V (GT, GX, GZ) Devices


Ordering Information for Arria V (SX, ST) SoCs


Ordering Information for Cyclone V (E, GX, GT) Devices

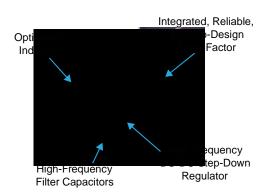

Ordering Information for Cyclone V (SE, SX, ST) SoCs

Ordering Information for Stratix IV (E, GX, GT), Cyclone IV (E, GX), Cyclone III, Arria II GZ, Arria II GX, MAX V, and MAX II Devices

Arria II GX MAX V MAX II

Ordering Information for Serial Configuration Devices

www.intel.com/enpirion


INTEL ENPIRION POWER SOLUTIONS

Intel[®] Enpirion[®] Power Solutions

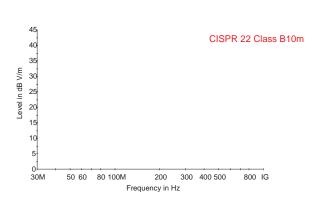
Intel Enpirion Power Solutions provide high-efficiency power management ideal for FPGAs, SoCs, and a wide range of devices. These robust, easy-to-use products meet your most stringent power requirements—all in a small footprint.

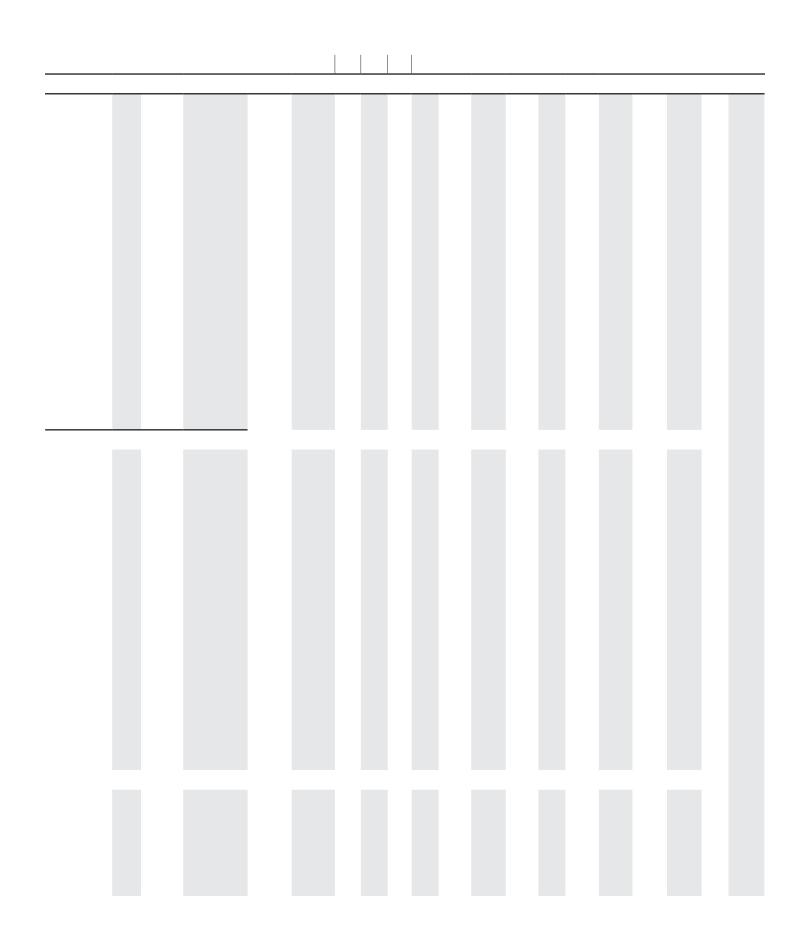
Intel Enpirion power system-on-chip (PowerSoC) products combine advanced technologies—such as high-frequency silicon design, digital communication and control, magnetics, and packaging—into a turnkey product. Unlike discrete power products, PowerSoCs give designers complete power systems that are fully simulated, characterized, and production qualified.

Powering Your Innovation with Intel Enpirion Power Solutions



Key Intellectual Property


- High-frequency power conversion
- Innovative magnetics engineering
- Advanced power packaging and construction
- Digital communication and control
- Complete and validated DC-DC
 step-down converter system design


Meeting Your Toughest Power Challenges

- Maximize performance
- Reduce system power consumption
- Increase power density
- Accelerate time to revenue

PART NUMBER	MAX I _{our} (A)	V _{IN} RANGE (V)	Vour RANGE (V)	SWITCHING FREQUENCY (MHZ)	PKG (PINS)	P L	KG SIZ (MM) W	′Е Н	SOLUTION SIZE (MM ²) ⁽¹⁾	V _{our} SET: VOLTAGE ID (VID)	POWER GOOD / POK FLAG	PROGRAMMABLE SOFT-START	PRECISION ENABLE	INPUT SYNCHRONIZATION	OUTPUT SYNCHRONIZATION	PARALLEL CAPABILITY	PROGRAMMABLE FREQUENCY	LIGHT LOAD MODE	AUTOMOTIVE-GRADE AVAILABLE
LOW DROPO	OUT R	EGULATO	ORS (LDOS)																
EY1602SI-ADJ	0.05	6.0 - 40.0	2.5 – 12.0		SOIC8	6.2	5.0	1.68	~45										
EY1603TI-ADJ	0.15	6.0 - 40.0	2.5 – 12.0		TSSOP14	6.4	5.0	0.9	~45										
EY1501DI-ADJ	1.0	2.2 – 6.0	0.8 - 5.0		DFN10	3.0	3.0	1.0	~15		у	у							
DC-DC REGU	JLATC	ORS																	
ER3015DI	0.5	3.0 - 36.0	0.6 - 34.0	0.3 – 2.0	DFN12	4.0	3.0	1.0	~160		У	у		у			у	у	
ER3110DI	1.0	3.0 - 36.0	0.6 – 12.0	0.3 – 2.0	DFN12	4.0	3.0	1.0	~160		у	у		У			У	у	
ER2120QI	2.0	5.0 - 14.0	0.6 - 5.0	0.5 – 1.2	QFN24	4.0	4.0	0.9	~165		у	у		у			У		
ER3125QI ⁽⁵⁾	2.5	3.0 - 36.0	0.8 - 36.0	0.2 – 2.2	DFN20	4.0	4.0	0.9	~225		У	у		У			У	у	
ER6230QI	3.0	2.7 – 6.6	0.75 – V _{IN} ⁽²⁾	0.8	QFN24	4.0	4.0	0.85	85		У	у		у				у	

INTEL QUARTUS PRIME DESIGN SOFTWARE

www.intel.com/quartus

The Intel Quartus Prime software is revolutionary in performance and productivity for FPGA, CPLD, and SoC designs, providing the fastest path to convert your concept into reality. The Intel Quartus Prime software also supports many third-party tools for synthesis, static timing analysis, board-level simulation, signal integrity analysis, and formal verification.

				AVAILABILITY	
INTEL QUARTUS	PRIME DESIGN SOFTWARE	V18.1	PRO EDITION (\$)	STANDARD EDITION (\$)	LITE EDITION (FREE)
	Stratix series	IV, V		3	
	Stratix series	10	3		
		Ш			3 ¹
	Arria series	II, V		3	
Device Support		10	3	3	
		IV, V		3	3
	Cyclone series	10 LP		3	3
		10 GX	3 ²		
	MAX series			3	3
	Partial reconfiguration		3	3 ³	
	Rapid recompile		3	34	
Design Flow	Block-based design		3		
	Incremental optimization		3		
	IP Base Suite		3	3	Available for purchase
	Intel HLS Compiler		3	3	3
	Platform Designer (Standa	ard)		3	3
	Platform Designer (Pro)		3		
	Design Partition Planner		3	3	
Design Entry/Planning	Chip Planner		3	3	3
0 ,, 0	Interface Planner		3		
	Logic Lock regions		3	3	
	VHDL		3	3	3
	Verilog		3	3	3
	SystemVerilog		3	3⁵	3⁵
	VHDL-2008		3		
	ModelSim-Intel FPGA Sta	rter Edition software	3	3	3
Functional Simulation	ModelSim-Intel FPGA Edi	tion software	3 ⁶	3 ⁶	3 ⁶
	Fitter (Place and Route)		3	3	3
	Early placement		3		
Compilation (Synthesis & Place and Route)	Register retiming		3	3	
(Synthesis & Place and Roule)	Fractal synthesis		3		
	Multiprocessor support		3	3	
	Timing Analyzer		3	3	3
Timing and Power Verification	Design Space Explorer II		3	3	3
	Power Analyzer		3	3	3
	Signal Tap Logic Analyzer		3	3	3
In-System Debug	Transceiver toolkit		3	3	
-	Intel Advanced Link Analy	zer	3	3	
Operating System (OS) Support	Windows*/Linux* 64 bit s		3	3	3

Notes:

1. The only Arria II FPGA supported is the EP2AGX45 device.

2. The Intel Cyclone 10 GX device support is available for free in the Pro Edition software.

3. Available for Cyclone V and Stratix V devices only and requires a partial reconfiguration license.

4. Available for Stratix V, Arria V, and Cyclone V devices.

5. Limited language support.

6. Requires an additional license.

ADDITIONAL DEVELOPMENT TOOLS

TOOLS	DESCRIPTION
Intel FPGA SDK for OpenCL	 No additional licenses are required. Supported with the Intel Quartus Prime Pro/Standard Edition software. The software installation file includes the Intel Quartus Prime Pro/Standard Edition software and the OpenCL software.
DSP Builder for Intel FPGAs	 Additional licenses are required. DSP Builder for Intel FPGAs (Advanced Blockset only) is supported with the Intel Quartus Prime Pro Edition software for Intel Stratix 10 and Intel Arria 10 devices. DSP Builder for Intel FPGAs (Standard Blockset and Advanced Blockset) is supported with the Intel Quartus Prime Standard Edition software for Intel Arria 10, Stratix V, Arria V, and Cyclone V devices.
Nios II Embedded Design Suite	 No additional licenses are required. Supported with all editions of the Intel Quartus Prime software. Includes Nios II software development tools and libraries.
Intel SoC FPGA Embedded Development Suite (SoC EDS)	 Requires additional licenses for ARM Development Studio 5 (DS-5) Intel SoC FPGA Edition. The SoC EDS Standard Edition is supported with the Intel Quartus Prime Lite/Standard Edition software and the SoC EDS Pro Edition is supported with the Intel Quartus Prime Pro Edition software.

INTEL QUARTUS PRIME DESIGN SOFTWARE FEATURES SUMMARY

Interface Planner	Enables you to quickly create your I/O design using real time legality checks.
Pin planner	Eases the process of assigning and managing pin assignments for high-density and high-pin-count designs.
Platform Designer	Automates system development by integrating IP functions and subsystems (collection of IP functions) using a hierarchical approach and a high-performance interconnect based on a network-on-a-chip architecture.
Off-the-shelf IP cores	Lets you construct your system-level design using IP cores from Intel and from Intel's third-party IP partners.
Synthesis	Provides expanded language support for System Verilog and VHDL 2008.
Scripting support	Supports command-line operation and Tcl scripting, as well as graphical user interface (GUI) design.
Rapid recompile	Maximizes your productivity by reducing your compilation time (for a small design change after a full compile). Improves design timing preservation.
Incremental optimization	Offers a faster methodology to converge to design sign-off. The traditional fitter stage is divided into finer stages for more control over the design flow.
Partial reconfiguration	Creates a physical region on the FPGA that can be reconfigured to execute different functions. Synthesize, place, route, close timing, and generate configuration bitstreams for the functions implemented in the region.
Block-based design flows	Provides flexibility of reusing timing-closed modules or design blocks across projects and teams.
Intel Hyperflex FPGA Architecture	Provides increased core performance and power efficiency for Intel Stratix 10 devices.
Physical synthesis	Uses post placement and routing delay knowledge of a design to improve performance.
Design space explorer (DSE)	Increases performance by automatically iterating through combinations of Intel Quartus Prime software settings to find optimal results.
Extensive cross-probing	Provides support for cross-probing between verification tools and design source files.
Optimization advisors	Provides design-specific advice to improve performance, resource usage, and power consumption.
Chip planner	Reduces verification time while maintaining timing closure by enabling small, post-placement and routing design changes to be implemented in minutes.
Timing Analyzer	Provides native Synopsys* Design Constraint (SDC) support and allowing you to create, manage, and analyze complex timing constraints and quickly perform advanced timing verification.
Signal Tap logic analyzer ¹	Supports the most channels, fastest clock speeds, largest sample depths, and most advanced triggering capabilities available in an embedded logic analyzer.
System Console	Enables you to easily debug your FPGA in real time using read and write transactions. It also enables you to quickly create a GUI to help monitor and send data into your FPGA.
Power Analyzer	Enables you to analyze and optimize both dynamic and static power consumption accurately.
EDA partners	Offers EDA software support for synthesis, functional and timing simulation, static timing analysis, board-level simulation, signal integrity analysis, and formal verification. To see a complete list of partners, visit www.intel.com/fpgaedapartners.
Fractal synthesis	Enables the Intel Quartus Prime software to efficiently pack arithmetic operations in FPGA's logic resources resulting in significantly improved performance.

Notes:

1. Available with Talkback feature enabled in the Intel Quartus Prime Lite Edition software.

Getting Started Steps

- Step 1: Download the free Intel Quartus Prime Lite Edition software www.intel.com/quartus
- Step 2: Get oriented with the Intel Quartus Prime software interactive tutorial After installation, open the interactive tutorial on the welcome screen.
- Step 3: Sign up for training www.intel.com/fpgatraining

Purchase the Intel Quartus Prime software and increase your productivity today.

INTEL QUARTUS PRIME SOFTWARE		STANDARD EDITION	PRO EDITION ¹	UPGRADE TO PRO EDITION ²	
Fixed	New	\$2,995	\$3,995	\$995	
Fixed	Renewal \$2,495 \$		\$3,395	σεεφ	
Float / Float Add Seats	New	\$3,995	\$4,995	\$995	
	Renewal	\$3,295	\$4,295	- φ.ε.ε.	

Notes: 1. The Quartus II Subscription Edition software or Intel Quartus Prime Standard Edition software is included when you purchase the Intel Quartus Prime Pro Edition software. 2. Current customers with valid Quartus II Subscription Edition software or Intel Quartus Prime Standard Edition software licenses are eligible to upgrade to Pro Edition. The number of upgrades available for purchase is equal to number of valid Standard or Subscription Edition software licenses.

MODELSIM-INTEL FPGA EDITION SOFTWARE	MODELSIM-INTEL FPGA STARTER EDITION SOFTWARE
\$1,995 Renewal \$1,695	Free
The ModelSim-Intel FPGA Edition software is available as a \$1,995 option for both the Intel Quartus Prime Standard Edition and Lite Edition software. It is 33 percent faster than the Starter Edition software with no line limitation.	Free for both Intel Quartus Prime Standard Edition and Lite Edition software with a 10,000 executable line limitation. The ModelSim-Intel FPGA Starter Edition software is recommended for simulating small FPGA designs.

FEATURES	DSP BUILDER FOR INTEL FPGAS (STANDARD BLOCKSET)	DSP BUILDER FOR INTEL FPGAS (ADVANCED BLOCKSET)
High-level optimization		3
Auto pipeline insertion		3
Floating-point blocks		3
Resource sharing		3
IP-level blocks	3	3
Low-level blocks	3	3
System integration	3	3
Hardware co-simulation	3	3

DSP BUILDER FOR INTEL FPGAs FEATURES SUMMARY

The DSP Builder for Intel FPGAs (Advanced Blockset) offers the

INTEL FPGA SDK For opencl

www.intel.com/opencl

Intel FPGA SDK for OpenCL¹ allows you to accelerate applications on FPGAs by abstracting away the complexities of FPGA design. Software programmers can write hardware-accelerated kernel functions in OpenCL that is an ANSI C-based language with additional OpenCL constructs to extract parallelism and program heterogeneous platforms. FPGAs are the accelerator of choice for heterogeneous systems, providing low latency, performance, and power efficiency versus GPUs and CPUs.

INTEL FPGA SDK FOR OPENCL SOFTWARE FEATURES SUMMARY

Altera Offline Compiler (AOC)	GCC-based model compiler of OpenCL kernel code
Altera OpenCL Utility (AOCL)	 Diagnostics for board installation Flash or program FPGA image Install board drivers (typically PCI Express)
Intel Code Builder for OpenCL API	 Edit, build, and debug OpenCL kernels Collect runtime performance View generated reports
Operating System	 Microsoft Windows 8.1 Microsoft 64 bit Windows 7 Windows 10 64-bit Red Hat Enterprise Linux 7.x (64 bit) Red Hat Enterprise Linux 6.x (64 bit)
Memory Requirements	Computer equipped with at least 32 GB RAM

OpenCL[™] and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Notes:

1. Product is based on a published Khronos Specification, and has passed the Khronos Conformance Testing Process. Current conformance status can be found at www.khronos.org/conformance.

INTEL SOC FPGA EMBEDDED Development suite

www.intel.com/soceds

The Intel SoC FPGA Embedded Development Suite (SoC EDS) is a comprehensive tool suite for embedded software development on Intel SoC FPGAs. It comprises development tools, utility programs, and design examples to jump-start firmware and application software development. The Intel SoC EDS is now available in Standard and Pro Editions. The Standard Edition includes extensive support for 28 nm SoC FPGA device families (Cyclone V SoC and Arria V SoC), whereas the Pro Edition is optimized to support the advanced features in the next-generation SoC FPGA device families (Intel Arria 10 SoC). In addition, the Intel SoC EDS includes an exclusive offering of the ARM DS-5 Intel SoC FPGA Edition. This toolkit enables embedded developers to code, build, debug, and optimize in a single Eclipse-based IDE. The ARM DS-5 Intel SoC FPGA Edition licenses are available in two options: a free limited license and a paid full-featured license with one year support. A full-featured ARM DS-5 Intel SoC FPGA Edition license is included at no cost with Intel SoC FPGA Development Kits.

INTEL SoC FPGA EMBEDDED DEVELOPMENT SUITE

			AVAILA	BILITY	
		STAN	DARD	PI	RO
	KEY FEATURES	FREE LICENSE	PAID LICENSE	FREE LICENSE	PAID LICENSE
	Cyclone V SoC	3	3		
Supported	Arria V SoC	3	3		
Device Families	Intel Arria 10 SoC	3	3	3	3
	Intel Stratix 10 SoC			3	3
	Linux application debugging over Ethernet	3	3	3	3
	Debugging over Intel FPGA Download Cable II · Board bring-up · Device driver development · Operating system (OS) porting · Bare-metal programming · ARM CoreSight trace support		3		3
DS-5 Intel SoC FPGA Edition Features	Debugging over DSTREAM · Board bring-up · Device driver development · OS porting · Bare-metal programming · ARM CoreSight trace support		3		3
	FPGA-adaptive debugging · Auto peripheral register discovery · Cross-triggering between CPU and FPGA domains · ARM CoreSight trace support · Access to System Trace Module (STM) events		3		3
	Streamline Performance Analyzer support	Limited	3	Limited	3
	Linaro Compiler	3	3	3	3
	Sourcery CodeBench Lite ARM EABI GCC	3	3	3	3
Compiler Tools	ARM Compiler 5 (included in the DS-5 Intel SoC FPGA Edition)		3		
	ARM Compiler 6 (included in the DS-5 Intel SoC FPGA Edition)		3		3
Libraries	Hardware Libraries (HWLIBs)	3	3	3	3
	Quartus Prime Programmer	3	3	3	3
Other Tools	Signal Tap Logic Analyzer	3	3	3	3
Other Tools	Intel FPGA Boot Disk Utility	3	3	3	3
	Device Tree Generator	3	3	3	3
Design Examples	Golden Hardware Reference Design (GHRD) for SoC development kits	3	3	3	3
	Triple-Speed Ethernet (TSE) with Modular Scatter-Gather Direct Memory Access (mSG-DMA) ¹	3	3	3	3
	PCI Express Root Port with Message Signal Interrupts (MSI) ¹	3	3	3	3
	Partial Reconfiguration Design Example ²			3	3
	Windows 7 64 bit	3	3	3	3
	Windows 10 64 bit	3	3	3	3
Host OS Support	Red Hat Linux 6 64 bit	32 bit libraries are required			

Notes:

1. These design examples are only available through Rocketboards.org.

2. For Intel Arria 10 SoC only

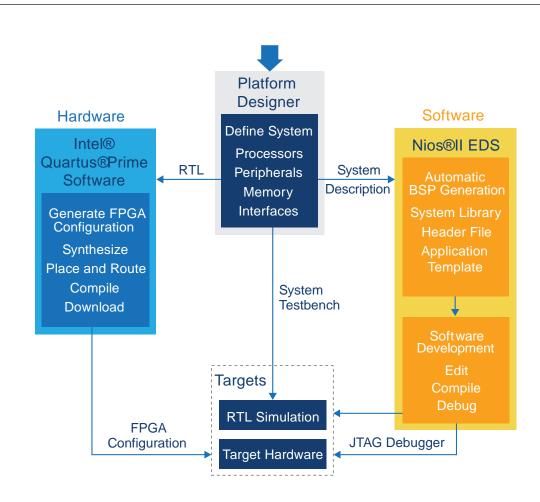
SOC FPGA OPERATING System support

Intel and our ecosystem partners offer comprehensive operating system support for Intel SoC FPGA development boards.

OPERATING SYSTEM	COMPANY
Abassi	Code Time Technologies
Android	MRA Digital
AUTOSAR MCAL	Intel
Bare-Metal/Hardware Libraries	Intel
Carrier Grade Edition 7 (CGE7)	MontaVista
DEOS	DDC-I
eCosPro	eCosCentric
eT-Kernel	eSOL
FreeRTOS	FreeRTOS.org
INTEGRITY RTOS	Green Hills Software
Linux	Open Source (www.rocketboards.org)
Nucleus	Mentor Graphics

OPERATING SIJ G S	0

NIOS II PROCESSOR


In any Intel FPGA, the Nios II processor offers a custom system solution that has the flexibility of software and the performance of hardware. Through its innovative design, the Nios II processor leverages the logic resources of the device to provide unprecedented hard and soft real-time capabilities.

You can also use the Nios II processor together with the ARM processor in Intel SoCs to create effective multi-processor systems.

With the Nios II processor you can:

• Lower overall system cost and complexity by integrating external processors into the FPGA.

- Scale performance with multiple processors, custom instructions (hardware acceleration of a software function), or co-processor modules (hardware accelerator next to the soft processor).
- Target the Intel Stratix, Intel Arria, Intel Cyclone, or Intel MAX 10 FPGA, or the FPGA portion of the Intel Stratix 10, Intel Arria 10, Arria V, or Cyclone V SoC.
- Eliminate the risk of processor and ASSP device obsolescence.
- Take advantage of the free Nios II economy core, the free Nios II Embedded Design Suite (EDS), and the free NicheStack TCP/IP Network Stack - Nios II Edition software to get started today.

Nios II Processor Development Flow

NIOS II PROCESSOR **EMBEDDED DESIGN** SUITF

NIOS II EDS CONTENTS

Nios II Software Build Tools for Eclipse (Nios II SBT for Eclipse) for software development

- · Based on Eclipse IDE
- New project wizards
- Software templates
- · Source navigator and editor

Compiler for C and C⁺⁺ (GNU)

Software Debugger/Profiler

Flash Programmer

- Embedded Software
- Hardware Abstraction Layer (HAL)
- · MicroC/OS-II RTOS (full evaluation version)
- · NicheStack TCP/IP Network Stack—Nios II Edition
- Newlib ANSI-C standard library

· Simple file system

Other Intel Command-Line Tools and Utilities

Design Examples

- Intel Quartus Prime Standard and Pro design software
- Platform Designer
- Signal Tap logic analyzer plug-in for the Nios II processor
- System Console for low-level debugging of Platform Designer systems

Getting started with the Nios II processor is now easier than ever. Not only is the Nios II EDS free, but the Nios II economy core IP is also free.

Licenses for the Nios II fast core IP are available stand-alone

The Nios II Embedded Design Suite (EDS) provides all the tools and software you need to develop code for the Nios II processor.

With the Nios II EDS you can:

Develop software with Nios II SBT for Eclipse: • Based on industry-standard Eclipse, the Nios II SBT is an integrated development environment for editing, compiling, debugging software code, and flash programming.

Manage board support packages (BSPs):

The Nios II EDS makes managing your BSP easier than ever. The Nios II EDS automatically adds device drivers for Intel FPGA-provided IP to your BSP, and the BSP Editor provides full control over your build options.

Get a free software network stack:

The Nios II EDS includes NicheStack TCP/IP Network Stack - Nios II Edition—a commercial-grade network stack software-for free.

Evaluate a RTOS:

The Nios II EDS contains an evaluation version of the popular Micrium MicroC/OS-II RTOS. Product licenses can be purchased directly from Micrium.

Join the Nios II Processor Community!

Be one of many Nios II processor developers who visit the Intel FPGA Wiki, Intel FPGA Community, and the Rocketboards.org website. Intel FPGA Wiki and the Rocketboards.org website have hundreds of design examples and design tips from Nios II processor developers all over the world. Join ongoing discussions on the Nios II processor section of the Intel FPGA Community to learn more about Linux, hardware, and software development for the Nios II processor.

Visit the following websites: fpgawiki.intel.com forums.intel.com www.rocketboards.org fpgacloud.intel.com

NIOS II PROCESSOR Operating System Support

Intel and our ecosystem partners offer comprehensive operating system support for the Nios II processor.

SUMMARY OF NIOS II SOFT PROCESSORS

OS	AVAILABILITY
ChibiOS/RT	Now through www.emb4fun.com
eCos	Now through www.ecoscentric.com
eCos (Zylin)	Now through www.opensource.zylin.com
embOS	Now through www.segger.com
EUROS	Now through www.euros-embedded.com
FreeRTOS	Now through www.freertos.org
Linux	Now through www.windriver.com
Linux	Now through www.rocketboards.org
oSCAN	Now through www.vector.com
TargetOS	Now through www. blunkmicro.com
ThreadX	Now through www.threadx.com
Toppers	Now through www.toppers.jp
μC/OS-II, μC/OS-III	Now through www.micrium.com
Zephyr	Now through https://www.zephyrproject.org/

CATEGORY PROCESSOR VENDOR DESCRIPTION With unique, real-time hardware features such as custom instructions, ability to use Power- and cost-optimized Nios II economy Intel FPGA hardware to accelerate a function, vectored interrupt controller, and tightly processing core coupled memory, as well as support for industry-leading RTOSs, the Nios II processor meets both your hard and soft real-time requirements, and offers a versatile solution for Real-time processing Nios II fast core¹ Intel real-time processing. A simple configuration option adds a memory management unit to the Nios II fast Applications processing Nios II fast core Intel processor core to support embedded Linux. Both open-source and commercially supported versions of Linux for Nios II processors are available. Certify your design for DO-254 compliance by using the Nios II Safety Critical core along HCELL Safety-critical processing Nios II SC with the DO-254 compliance design services offered by HCELL. Nios II Lockstep Provides high diagnostic coverage, self-checking and advanced diagnostic features in Lockstep Solution Intel full compliance with functional safety standards IEC 61508 and ISO 26262. dual core Nios II fast, Enables software designers to qualify the use of Nios II Toolchain in their safety Safety qualification kit application, fulfilling the requirements of IEC 61508 up to SIL 4 and ISO 26262 up to Validas AG standard and (Qkit) economy cores ASIL D.

Notes:

 With the Nios II Gen2 product the standard core is not available as a pre-configured option, however the Gen2 fast core can be configured in Qsys to have the same feature set as the standard core.

Getting Started

To learn more about Intel's portfolio of customizable processors and how you can get started, visit www.intel.com/niosii.

INTEL'S CUSTOMIZABLE PROCESSOR Portfolio

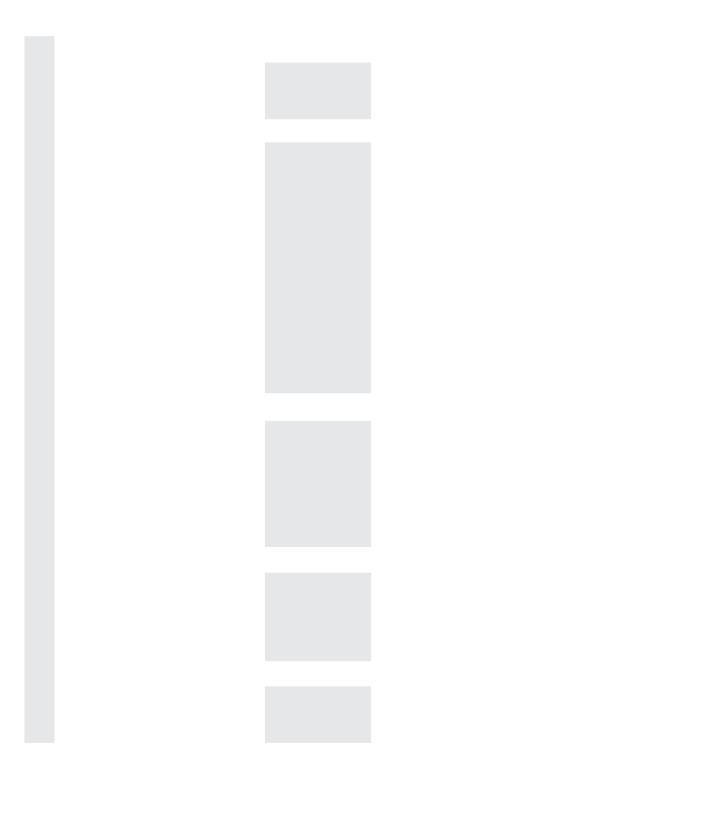
PERFORMANCE AND FEATURE SET SUMMARY OF KEY PROCESSORS SUPPORTED ON INTEL FPGAS

CATEGORY	COST- AND POWER-SENSITIVE PROCESSORS	REAL-TIME PROCESSOR	APPLICATIONS PROCESSORS				
FEATURES	NIOS II ECONOMY	NIOS II FAST	28 NM ¹ DUAL-CORE ARM CORTEX-A9	20 NM ² DUAL-CORE ARM CORTEX-A9	14 NM ² QUAD-CORE ARM CORTEX-A53		
Maximum frequency (MHz) ³	400 (Stratix V)	330 (Stratix V)	1.5 GHz (Arria 10 -1 speed grade)	1.5 GHz (Stratix series)			
Maximum performance (MIPS⁴ at MHz) Stratix series	52 (at 400 MHz)	363 (at 330 MHz)	-		-		
Maximum performance (MIPS⁴ at MHz) Arria series	44 (at 340 MHz)	319 (at 290 MHz)	2,625 MIPS per core at 1.05 GHz	3,750 MIPS per core at 1.5 GHz	-		
Maximum performance (MIPS⁴ at MHz) Cyclone series	30 (at 230 MHz)	187 (at 170 MHz)	-				
Maximum performance efficiency (MIPS⁴ per MHz)	0.13	1.1	2.5	2.3			
16/32/64 bit instruction set support	32	32	16 and 32	16 and 32	16/32/64		
Level 1 instruction cache	-	Configurable	32 KB	32 KB	32 KB		
Level 1 data cache	-	Configurable 32 KB 32 KB			32 KB		
Level 2 cache	-	_	512 KB	1 MB			
Memory management unit	-	Configurable	gurable 3 3 3				
Floating-point unit	-	FPH⁵	FPH ⁵ Dual Dual precision				
Vectored interrupt controller	-	Optional	-				
Tightly coupled memory	-	Configurable	-	_	-		
Custom instruction interface	Up to 256	Up to 256	-	_	-		
Equivalent LEs	600	1,800 – 3,200	HPS HPS HPS				

Notes:

1. 28 nm SoCs comprise Cyclone V SoCs and Arria V SoCs.

2. 20 nm SoCs comprise Intel Arria 10 SoCs.


3. Maximum performance measurements measured on Stratix V FPGAs.

4. Dhrystone 2.1 benchmark. Note that performance will vary with system and software configuration.

5. Floating-point hardware - Nios II processor custom instructions.

INTEL AND DSN MEMBER IP FUNCTIONS

www.intel.com/fpgaip

PRODUCT NAME	VENDOR NAME
HIGH SPEED	
JESD204B	Intel
RapidIO* Gen1, Gen2	Intel
Common Public Radio Interface (CPRI)	Intel
Interlaken	Intel
Interlaken Look-Aside	Intel
SerialLite II/III	Intel
SATA 1.0/SATA 2.0	Intelliprop, Inc.
RapidIO Gen3	Mobiveil
QDR Infiniband Target Channel Adapter	Polybus
PCI EXPRESS / PO	сі
PCI Express Gen1 x1, x4 Controller (Soft IP)	Intel
PCI Express Gen1, Gen2, Gen3 x1, x2, x4, x8, and x16 Controller (Hardened IP)	Intel
PCI 32/64 bit PCI Master Target 33/66 MHz Controllers	CAST, Inc.
PCI Multifunction Master/Target Interface	CAST, Inc.
Expresso 3.0 PCI Express Core (Gen 1 - 3)	Northwest Logic, Inc.
PCI Express Hybrid Controller	Mobiveil, Inc.
PCI Express to AXI Bridge Controller	Mobiveil, Inc.
XpressRICH3 PCI Express Gen1, Gen2, and Gen3	PLDA
PCI and PCI-X Master/ Target Cores 32/64 bit	PLDA
SERIAL	
Generic QUAD SPI Controller	Intel
Avalon [®] I ² C (Master)	Intel
I ² C Slave to Avalon-MM Master Bridge	Intel
Serial Peripheral Interface (SPI)/Avalon Master Bridge	Intel
UART	Intel

Intel

Intel

CAST, Inc.

CAST, Inc.

CAST, Inc.

CAST, Inc.

CAST, Inc.

Digital Core Design

Digital Core Design

Digital Core Design

Digital Core Design

Eureka Technology,

Eureka Technology,

El Camino GmbH

Inc.

Inc. IFI INTERFACE AND PROTOCOLS (CONTINUED)

MEMORIES AND MEMORY CONTROLLERS

PRODUCT NAME	VENDOR NAME					
SERIAL (CONTINUED)						
I ² C Master/Slave/PIO Controller	Microtronix, Inc.					
I ² C Master and Slave	SLS					
USB High-Speed Function Controller	SLS					
USB Full-/Low-Speed Function Controller	SLS					
Embedded USB 3.0 / 3.1 Gen 1 Host and Device Controllers	SLS					
USB 3.0 SuperSpeed Device Controller	SLS					
AUDIO AND VIDEO						
Character LCD	Intel					
Pixel Converter (BGR0 to BGR)	Intel					
Video Sync Generator	Intel					
SD/HD/3G-HD Serial Digital Interface (SDI)	Intel					
DisplayPort 1.1 and 1.2	Intel					
HDMI 1.4 and 2.0	Intel					
Bitec HDMI 2.0a IP core	Bitec					
DisplayPort 1.3 IP Core	Bitec					
HDCP IP Core	Bitec					
AC'97 Controller	SLS					
DMA						
DMA Controllers	Eureka Technology, Inc.					
Lancero Scatter-Gather DMA Engine for PCI Express	Microtronix, Inc.					
AXI* DMA back-End Core	Northwest Logic, Inc.					
Expresso DMA Bridge Core	Northwest Logic, Inc.					
Express DMA Core	Northwest Logic, Inc.					
FLASH						
CompactFlash (True IDE)	Intel					
EPCS Serial Flash Controller	Intel					
Flash Memory	Intel					
NAND Flash Controller	Eureka Technology, Inc.					
Universal NVM Express Controller (UNEX)	Mobiveil, Inc.					
ONFI Controller	SLS					
Enhanced ClearNAND Controller	SLS					
SDRAM						
DDR/DDR2 and DDR3/DDR4 SDRAM Controllers	Intel					
LPDDR2 SDRAM Controller	Intel					
RLDRAM 2 Controller	Intel					
Streaming Multi-Port SDRAM Memory Controller	Microtronix, Inc.					
HyperDrive Multi-Port DDR2 Memory Controller	Microtronix, Inc.					
Avalon Multi-Port SDRAM Memory Controller	Microtronix, Inc.					

SRAM	
SSRAM (Cypress CY7C1380C)	Intel
QDR II/II+/II+Xtreme/IV SRAMController	Intel

16550 UART

CAN 2.0/FD

Controller H16550S UART

Slave

JTAG/Avalon Master Bridge

MD5 Message-Digest

Smart Card Reader

Slave Controller

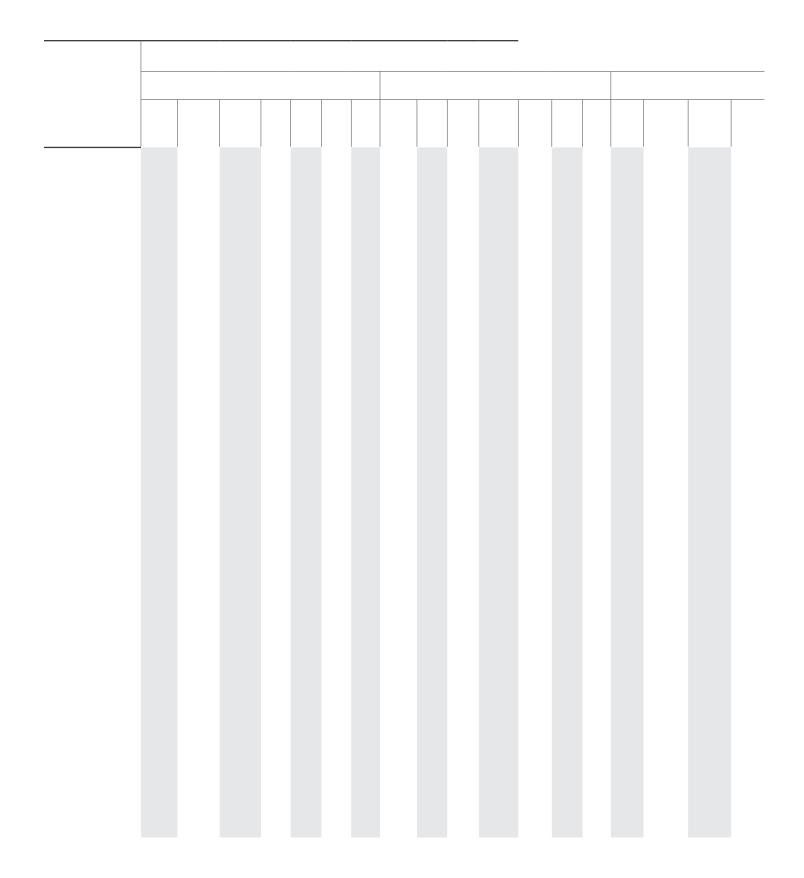
Nios II Advanced CAN

Local Interconnect Network (LIN)

DI2CM I²C Bus Interface-Master

DI2CSB I²C Bus Interface-Slave

Secure Digital (SD)/MMC SPI


D16550 UART with 16-Byte FIFO

DSPI Serial Peripheral Interface Master/

Secure Digital I/O (SDIO)/SD Memory/

SDIO/SD Memory/ MMC Host Controller

TRANSCEIVER PROTOCOLS

	SUPPORTED DEVICES																		
PROTOCOLS		STR		RIES F	PGAs				ARRIA SERIES FPGAs							CYCLONE SERIES FPGAs			
	10 GX/SX	10 МХ/ТХ	V GX/GS	V GT	IV GX	IV GT	II GX	10 GX/SX	10 GT	V GX	V GT/ST	V GZ	II GX	II GZ	10 GX	V GX/SX	V GT/ST	IV GX	
JESD204 A/B	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
JESD204C	-	3	-	_	-	-	-	_	_	-	-	_	-	-	-	-	-	-	
HMC ¹	3	-	-	-	-	-	-	3	3	-	-	-	-	-	-	-	-	-	
HyperTransport	3	3	3	3	3	3	-	3	3	3	3	3	-	-	-	-	-	-	
InfiniBand	3	3	3	3	-	-	-	3	3	-	-	3	-	-	-	-	-	-	
Interlaken	3	3	3	3	3	3	-	3	3	3	3	3	-	-	3	-	-	-	
Interlaken Look-Aside	3	3	3	3	-	-	-	3	3	3	3	3	-	-	-	-	-	-	
MoSys	3	3	3	-	-	-	-	3	3	-	-	_	-	-	-	-	-	-	
OBSAI	3	3	3	3	3	3	3	3	3	3	3	3	3	3	_	3	3	3	
PCI Express	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
RXAUI/DXAUI	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-	-	-	-	
SGMII/QSGMII	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
QPI	_	3	3	3	-	-	-	3	3	-	-	3	-	-	-	-	-	-	
SAS/SATA	3	3	3	3	3	3	-	3	3	3	3	3	3	3	3	3	3	3	
SerialLite II	3	3	3	3	3	3	-	3	3	3	3	_	3	3	-	3	3	-	
SerialLite III	3	3	3	3	-	-	-	3	3	-	-	3	-	-	3	-	-	-	
SDI	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
SFI-5.1	3	3	3	3	3	3	3	3	3	3	3	3	-	-	_	-	-	-	
SFI-S/SFI-5.2	3	3	3	3	-	3	-	3	3	_	-	3	-	-	_	-	-	-	
RapidIO	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
SPAUI	3	3	3	3	3	3	3	3	3	_	_	3	-	_	3	_	_	_	
SONET/SDH	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-	
XAUI (10GBASE-X)	3	3	3	3	3	3	3	3	3	3	3	3	3	3	_	3	3	3	
V-by-One	3	3	3	3	3	3	3	3	3	3	3								

www.intel.com/fpgaboards

INTEL FPGA AND PARTNER DEVELOPMENT KITS

Intel FPGA development kits provide a complete, high-quality design environment for engineers. These kits help simplify the design process and reduce time to market. Development kits include software, reference designs, cables, and programming hardware. Intel FPGA and partner development kits are listed below. For more details about these development kits or other older development kits that are available, check out our online development kits page at www.intel.com/fpgaboards.

PRODUCT AND VENDOR NAME	DESCRIPTION
INTEL STRATIX 10 FPGA KITS	
Stratix 10 GX FPGA Development Kit Intel	This kit provides a complete design environment including all hardware and software needed to take advantage of the performance and capabilities of the Intel Stratix 10 GX FPGA. This kit can be used to develop and test PCI Express 3.0 designs, memory subsystem consisting of DDR4, DDR3, QDR IV, and RLDRAM III memories, and develop modular and scalable designs using FPGA mezzanine card (FMC) connectors.
Stratix 10 GX Transceiver Signal Integrity Development Kit Intel	This kit provides a complete design environment including all hardware and software needed to take advantage of the performance and capabilities of the Intel Stratix 10 GX FPGA. This kit can be used to evaluate transceiver channel performance, generate and verify pseudo-random binary sequence (PRBS), and dynamically change the channel's differential output voltage (VoD), pre-emphasis, and equalization settings.
Stratix 10 SX SoC Development Kit Intel	The kit offers a quick and simple approach for developing custom ARM processor-based SoC designs. It offers memory options, such as HiLo DDR4 and DDR4 SODIMM. There are also two FMC+ low-pin-count connectors and two quad small form factor pluggable (QSFP) connectors for transceiver channel performance. More notably, the kit offers two HPS peripheral daughtercards to expand the capabilities.
Stratix 10 MX FPGA Development Kit Intel	This kit can be used to test and develop designs using the Intel Stratix 10 MX FPGA, which features High-Bandwidth Memory (HBM). PCIe 3.0 designs can be developed as the board contains a PCIe end point connector and a PCIe root port connector. The board also contains a DIMM socket and HiLO connector for expanded memory capability.
S10VG4 BittWare Inc.	This PCI Express card is based on the Intel Stratix 10 FPGA and is ideal for high-density data center applications. BittWare's Viper platform offers support for large FPGA loads, up to 32 GB of DDR4 SDRAM, and 4x100 Gbps Ethernet. The card is enabled for high-speed networking with four front panel QSFP+ cages, each supporting 40/100GbE or four 10/25GbE channels. Serial expansion is available through two UltraPort SlimSAS connectors. A 1GbE interface, a pulse-per-second (PPS) input, and a USB interface are available for debug and support. The board's flexible memory configuration includes four DIMM sites that support DDR4 SDRAM and QDR.
Nallatech 520 Nallatech	This is a PCI Express accelerator card based on the Intel Stratix 10 FPGA designed to address a range of compute-intensive and latency-critical applications including machine learning, gene sequencing, oil and gas, and real-time network analytics. This introduces the ground-breaking single precision floating-point performance of up to 10 TFLOPS per device.

PRODUCT AND VENDOR NAME	DESCRIPTION
INTEL ARRIA 10 FPGA KITS	
Arria 10 FPGA Development Kit Intel	This kit provides a complete design environment including hardware and software for prototyping and testing high-speed serial interfaces to an Intel Arria 10 GX FPGA. This kit includes the PCI Express x8 form factor, two FMC connectors for expandability, Ethernet, USB, and SDIs. The board includes one HiLo connector for plugging in DRAM and SRAM daughtercards. Supported daughtercard formats include DDR4 x72 SDRAM, DDR3 x72 SDRAM, RLDRAM 3 x36, and QDR IV x36 SRAM. The board includes SMA connectors for transceiver output, clock output, and clock input. Several programmable oscillators are available and other user interfaces include user push buttons, dual in-line package (DIP) switches, bi-color user LEDs, an LCD display, power, and temperature measurement circuitry. This development kit comes with a one-year license for the Intel Quartus Prime design software.
Arria 10 FPGA Signal Integrity Kit Intel	This kit enables a thorough evaluation of transceiver signal integrity and device interoperability. Features include six full-duplex transceiver channels with 2.4 mm SMA connectors, four full-duplex transceiver channels to Amphenol Xcede+ backplane connector, four full-duplex transceiver channels to C form factor pluggable (CFP2) optical interface, four full-duplex transceiver channel to QSFP+ optical interface, one transceiver channel to SFP+ optical interface, and ten full-duplex transceiver channels to Samtec BullsEye high-density connector. This board also includes several programmable clock oscillators, user pushbuttons, DIP switches, user LEDs, a 7-segment LCD display, power and temperature measurement circuitry, Ethernet, an embedded Intel FPGA Download Cable II, and JTAG interfaces. This development kit comes with a one-year license for the Intel Quartus Prime design software.
Arria 10 SoC Development Kit Intel	The Arria 10 SoC Development Kit offers a quick and simple approach for developing custom ARM processor-based SoC designs. The Intel Arria 10 SoCs offers full software compatibility with previous generation SoCs, a broad ecosystem of ARM software and tools, and an enhanced FPGA and DSP hardware design flow. This kit includes an Arria 10 10AS066N3F40I2SG SoC, PCI Express Gen3 protocol support, a dual FMC expansion headers, two 10/100/1000 SGMII Ethernet ports, one 10/100/1000 RGMII Ethernet port, two 10GbE small form factor pluggable (SFP) cages, two 1GB DDR4 HPS HiLo memory card, DDR4 SDRAM, NAND, quad SPI, SD/MICRO boot flash cards, character LCD, display port, and SDI port.
Attila Instant-Development Kit Arria 10 FPGA FMC IDK REFLEX	The Arria 10 FPGA FMC Instant-Development Kit provides out-of-the-box experience, combining compact hardware platform and an efficient intuitive software environment. This kit is designed for high-performance serial transceiver applications using Intel Arria 10 GX 1150 KLEs. Hardware, software design tools, IP, and pre-verified reference designs included. Its unique installation and GUI allows an immediate start, and its reference designs enable fast turn-around designs, shortening and securing the developments.
Alaric Instant-Development Kit Arria 10 SoC FMC IDK REFLEX	The Arria 10 SoC FMC Instant-Development Kit provides out-of-the-box experience, combining compact hardware platform and an efficient intuitive software environment. This kit is designed for high-performance serial transceiver applications using an Intel Arria 10 SoC with 660 KLEs and an ARM dual-core Cortex-A9 MPCore. Its unique installation and GUI allows an immediate start, and its reference designs enable fast turn-around designs, shortening and securing the developments.
Nallatech 510T Nallatech	Nallatech 510T is an FPGA co-processor that is designed to deliver ultimate performance per watt for compute-intensive data center applications. The 510T is a GPU-sized 16-lane PCI Express Gen3 card featuring two of Intel's new floating-point enabled Intel Arria 10 FPGAs delivering up to 16 times the performance of the previous generation [†] . Applications can achieve a total sustained performance of up to 3 TFLOPS.
INTEL CYCLONE 10 FPGA KITS	
Intel Cyclone 10 LP Evaluation Kit Intel	The Intel® Cyclone® 10 LP Evaluation Kit provides an easy-to-use platform for evaluating Intel Cyclone 10 LP FPGA technology and Intel Enpirion® regulators. This evaluation board enables you to develop designs for Intel Cyclone 10 LP FPGAs via Arduino UNO R3 shields, Digilent Pmod Compatible cards, GPIOs, or Ethernet connector. This kit also measures key Intel Cyclone 10 LP FPGA power supplies and reuse the kit's PCB schematic as a model for your design.
Intel Cyclone 10 GX FPGA Development Kit Intel	The Intel Cyclone 10 GX FPGA Development Kit is an ideal starting point for developing applications, such as embedded vision, factory automation, and surveillance. With this development kit, you can develop Intel Cyclone 10 GX FPGA-based designs with expansion through PCIe Gen2, USB 3.1, SFP+, and RJ-45.

PRODUCT AND VENDOR NAME	DESCRIPTION
INTEL MAX 10 FPGA KITS	
MAX 10 NEEK Terasic	The MAX 10 Nios II Embedded Evaluation Kit (NEEK) is a full featured embedded evaluation kit based on the Intel MAX 10 family of FPGAs. The MAX 10 NEEK delivers an integrated platform that includes hardware, design tools, IP, and reference designs for developing a wide range of applications. This kit allows developers to rapidly customize their processor and IP to suit their specific needs, rather than constraining their software around the fixed feature set of the processor. The kit features a capacitive LCD multimedia color touch panel, which natively supports multi-touch gestures. An eight megapixel digital image sensor, ambient light sensor, and three-axis accelerometer make up this rich feature set, along with a variety of interfaces connecting the MAX 10 NEEK to the outside for Internet of Things (IoT) applications across markets.
MAX 10 FPGA Development Kit Intel	This kit offers a comprehensive general-purpose development platform for many markets and applications, such as industrial and automotive. This fully featured development kit includes a 10M50DAF484C6G device, DDR3 memory, 2X 1 GbE, high-speed mezzanine card (HSMC) connector, quad serial peripheral interface, 16 bit digital-to-analog converter (DAC), flash memory, and 2X Digilent Pmod* Compatible headers.
MAX 10 FPGA Evaluation Kit Intel	The 10M08 evaluation board provides a cost-effective entry point to Intel MAX 10 FPGA design. The card comes complete with an Arduino header socket, which lets you connect a wide variety of daughtercards. Other features include an Intel MAX 10 10M08SAE144C8G device, Arduino shield expansion, access to 80 I/O through-holes, and a prototyping area.
DECA MAX 10 FPGA Evaluation Kit Arrow	DECA is a full-featured evaluation kit featuring a 10M50DAF484C6G device. The kit includes a BeagleBone- compatible header for further I/O expansion, a variety of sensors (gesture/humidity/ temperature/CMOS), MIPI CSI-2 camera interface, LEDs, pushbuttons, and an on-board Intel FPGA Download Cable II.
Mpression Odyssey MAX 10 FPGA IoT Evaluation Kit Macnica	The Macnica MAX 10 FPGA evaluation kit connects and controls your FPGA design via Bluetooth using the Mpression Odyssey Smartphone application. This kit also includes a10M08U169C8G device, SDRAM, Arduino shield expansion capability, and Bluetooth SMART connectivity module.
STRATIX V FPGA KITS	
Stratix V Advanced Systems Development Kit Intel	This kit is a complete systems design environment that includes both the hardware and software needed to begin architecture development and system design using Stratix V FPGAs. The PCI Express-based form factor utilizes a x16 edge connector, and includes high memory bandwidth to DDR3, QDR II+, and serial memory. Multiple high-speed protocols are accessible through FMC and HSMC connections. A one year license for the Intel Quartus Prime design software is available with this kit.
Stratix V GX FPGA Development Kit Intel	This kit provides a full-featured hardware development platform for prototyping and testing high-speed serial interfaces to a Stratix V GX FPGA. This kit includes the PCI Express x8 form factor, two HSMC connectors for expandability, and Ethernet, USB, and SDI interfaces. Memory includes one x72 DDR3 SDRAM, one RLDRAM II x18 QDR II+ SRAM, and flash memory. This kit also includes two SMA connectors for a differential transceiver output. Several programmable oscillators are available and other user interfaces include three user pushbuttons, one 8-position DIP switch, 16 user LEDs, an LCD display, and power and temperature measurement circuitry.
Transceiver Signal Integrity Development Kit, Stratix V GX Edition Intel	This kit enables a thorough evaluation of transceiver signal integrity and device interoperability. Features include seven full-duplex transceiver channels with SMA connectors, two 14G backplane connectors (from Amphenol and Molex), four programmable clock oscillators, four user pushbuttons, one 8-position DIP switch, eight user LEDs, a 7-segment LCD display, power and temperature measurement circuitry, and Ethernet, an embedded Intel FPGA Download Cable, and JTAG interfaces.

×ÙÖËÜÊÛ ÈÕË ÝÌÕËÖÙ ÕÈÔÌ

ËÌÚÊÙĐ×ÛĐÖÕ

ÚÛÙÈÛÐ& Ý Í×ÎÈ ÒĐÛÚ 3ÊÖÕÛĐÕÜÌË′

Ûóâïôäæê÷æó Úêèïâí Đĩ Ëæ÷æíðñîæïō Òêō Úōóâōêù Ý ÎÛ Ìåêõêðï Đïōæí	Úéæ Úōóâōêù Ý ÎÛ Ûóâīôäæê÷æó Úêèīâí Đĩōæèóêōú Ëæ÷æíðñîæīō Òêō ñóð÷êá ōæôōêīè âīå êïōæóðñæóâāêíêōú âĩâíúôêô Úéæ âääæôôêâêíêōú ōð îöíõêñíæ ä êîñíæîæïôæà êï ōéæ ôúôōæî øêōé ōóâīôäæê÷æó äéâïīæíô â÷âêíâãíæ õéóðöèé õæböñæöãúōðóô Úéêô åæ÷æíðñîæïō ìêō äâï ãæ öôæå çðó æ÷âíöâōêðī ðç ōóâīôäæ èæïæóâôêðī âïå äéæäìêīè ñôæöåðžóâïåðî ãêïâóú ôæòöæïäæ ¡×ÙÉÚ¢ ñâōōæóió iðō óæòöêóæ õéæ Đĩōæí Øöâóöôô ×óêîæ ôðçōøâóæ âääæôô âå÷âïäæå æòöâíé ãêō æóóðó óâöêð ¡ÉÌÙ¢ ëêöōæó âïâíúôêô âĩâ ÷æóêçúêïè ñéúôêäâí îæâêâ âö ÎÛ Í×ÎÈô çðó õâóèæōæâ ñóðōðäðíô ôöäé âô ÊÌĐž "£ %Î ÊÌĐž Î ×ÊĐ Ìùñóæôô ìōéæóïæō ßÈÜĐ ÊÌĐž#Î Úæóêâí ÙâñêåĐÖ ÏĔžÚËĐ âïå ðōéæóô àðö äâï öôa äðïïæãōðóô õð æ÷âíöâõæ äöôôôî ãâäìñíâïæ ñæóçðóîâïäæ âïâ æ÷âíöâôæ íêīì É
Î Ëæ÷æíðñîæïõ Òêõ Úõóâõêù Ý Îß Ìåêõêðï Đïõæí	Ûéêô ìêõ æïâãíæô â õéðóðöèé æ÷âíöâõêðī ðç Î åæôêèïô Đõ ôöññðóö Î £! Î ởàöíæô âïå âññíêäâõêðïô óæòöêóêïè æùõæóïâí îæîðóú êïõæóçâäæô õéóðöèé î ðáöí á âññíêäâõêðiô óæòöêóêïè æùõæóïâí îæîðóú êïõæóçâäæô õéóðöèé î æîðóú ãâïìô Þêõé õéêô ìêõ úðö äâï æ÷âíöâõæ õóâïôäæê÷æó ñæóçðóîâïäæ ö äðîñíêâïäæ õð ôõâïåâóåô ôöäé âô Σ! Σ Î Ìõéæóïæõ Đĩōæóíâìæï ÊÌĐž#Σ j Îæï Îæï âïå Îæï ¢ âïå ðõéæó îâëðó ôõâïåâôáô Ûéêô ìêö äâï âíôð ÷âíêàãô ðñõêäâí îðåöíæô ôöäé âô ÚÍx ÚÍx• ØÚÍx âïå ÊÍx
ËÚx Ëæ÷æíðñîæïõ Òêõ Úõóâõêù Ý Ìåêõêðï Đïõæí	Ûéæ ËÚx Ëæ÷æíðñîæïõ Òêõ Úõóâõêù Ý Ìåêõêðï ñóð÷êåæô â äðîñíæõæ åæôê éâóåøâóæ âïå ôðçõøâóæ úðö ïææå õð ãæèêï åæ÷æíðñêïè ËÚx êïõæïôê÷æ Íxí åæ÷æíðñîæïõ ìêõ êô ÙðľÚžäðîñíêâïõ àðö äâï öôæ õéêô åæ÷æíðñîæïõ ìêõ õð âõ åâõâ óâõæô öñ õð Îæï åæ÷æíðñ âïå õæôõ îæîðóú ôöãôúôõæîô çðó ËËÙ âïå öôæ õéæ ÏÚÔÊ äðïïæäõðóô õð êïõæóçâäæ õð ðïæ ðç ð÷æó " åê.æóæïõ Ï ôöññðóõêïè ñóðõðäðíô ôöäé âô Úæóêâí ÙâñêåĐÖ Îãñô Ìõéæóïæõ ÚÖÕÌÛ
Ú"ž#ÜžÝ×ß ¡Ú"#ߢ ÉêõõÞâóæ	Ûéêô óöèèæå #Ü Ý×ß äâóå êô ãâôæå ðī õéæ Úõóâõêù Ý Îß đó ÎÚ ÍxÎÈô Þéæï ÍxÎÈ äðñóðäæôôðó õéæ ÈÙÔ ÊðóõæùžÈ% äðïõóðí ñóðäæôôðó âïå õéæ ÈÛÓÈÕ ìêõ êõ äóæâõæô â 0æùêãíæ âïå æ1äêæïõ ôðíööêðï çðó éêèéźñæóçðóîâïäæ ôê ãðâóå ñóð÷êåæô â äðï/èöóâãíæ !%žñðóõ îöíõêžèêèâãêō öóâïôäæê÷æó êïõæóç êïäíöåêïè Úæóêâí ÙâñêåĐÖ xÊĐ Ìùñóæôô âïå ÎãÌ Èååêõêðïâí Đ£Ö êïõæóçâ ÓÝËÚ Ûéæ ãðâóå çæâõöóæô öñ õð % ÎÉ ðç ËËÙ ÚËÙÈÔ âô øæíí âô 0âôé îæî "\$žäðîñíêâïõ ÍÔÊ ôêõæô ñóð÷êåæ âååêõêðïâí 0æùêãêíêõú çðó æïéâïäêïè õéæ
Ú"žxÊÐ ÌùñóæôôžÏØ ¡Ú" ÉêõõÞâóæ	Ûéêô éâíçžíæïèõé xÊĐ Ìùñóæôô ù% äâóå êô ãâôæå ðĩ õéæ Úõóâõêù Ý Îß ðó Îl ôðíöõêðï çðó éêèéžñæóçðóîâïäæ ïæõøðóì ñóðäæôôêïè ôêèïâí ñóðäæôôêïè âĩ \hat{c} Éêõõ Þâóæ ô Èïæîðïæ äðñóðäæôôðó âïå ÈÛÓÈÕÛêÚ ÍóâîæÞðóì æïéâïäæô ñóðåð "Êêõõ Þâóæ ô Èïæîðïæ äðñóðäæôôðó âïå ÈÛÓÈÕÛêÚ ÍóâîæÞðóì æïéâïäæô ñóðåð "æ 4 æï èóæâõæó ñóðäæôôêïè æ1äêæïäú Ö÷æó # ÎÉ ðç ðïãðâóå îæîðóú êïäíöå ÚÙÈÔ Ûøð çóðïõžñâïæí ØÚÍו äâèæô ñóð÷êåæ âååêõêðïâí Oæùêãêíêõú çðó ô ¡ðó æêèéõ ÎãÌ¢ åêóæäõ õð õéæ ÍxÌÈ çðó óæåöäæå íâöæïäú îâìêïè êõ êåæâ ïæõøðóìêïè âññíêäâõêðïô
Ú"ž×ÊÐ Ìùñóæôô ¡Ú"×Ì¢ ÉêõõÞâóæ	Ûéêô xÊĐ Ìùñóæôô ù% äâóå êô ãâôæå ðĩ õéæ Úõóâõêù Ý Îß ðó ÎÚ ÍxÎÈ âĩả êô ĩæõøðóì ñóðäæôôêiè ôêèïâí ñóðäæôôêiè âïå åâôâ âäòöêôêöêði Êðîãêïêiè ê âïả ÈÛÓÈÕÛêÚ ÍóâîæÞðóì æïéâïäæô ñóðåöäõê÷êõú âïå ñðóõâãêíêõú âïå âííðø Ûéæ ãðâóå ñóð÷êåæô öñ õð ÎÉ ởç ËËÙ ÚËÙÈÔ øêõé ðñõêðïâí ÌÊÊ Èï ðñõê âååêõêðïâí 0æùêãêíêõú çðó æïéâïäêïè õéæ ãðâóå ô Đ£Ö âïå ñóðäæôôêïè äâña ñóðäæôôêïè Ûéæ ãðâóå âíôð éâô õéæ ðñõêðï ðç õøð çóðïôžñâïæí ØÚÍו äâèa íâïæ åêóæäõ õð õéæ ÍxÎÈ çðó óæåöäæå íâõæïäú îâìêïè êõ êåæâí çðóéêèéžçó âññíêäâõêðïô Đõ êô âíôð â÷âêíâãíæ øêõé È£Ë âïå Ë£È äðï÷æóôêðï ðñõêðïô
xóðäÏÐÓô ÎêËæí	\hat{U} éêô ìêõ êô ãâôæå ðĩ õéæ Úõóâõêù Ý âĩå Úõóâõêù ĐÝ ÍxÎÈ Úéêô åæ÷æíðñîa Îâóåøâóæ êï õéæ Óððñ âääæíæóâõêðï õððí çðó óöïïêïè Úêîöíêïì åæôêèïô ðĩ H âöõðîâõêäâííú õóâïôíâõæ Úêîöíêïì åæôêèïô ãöêíõ öôêïè ËÚx Éöêíåæó çðó Đĩ äðåæ öïåæó Úêîöíêïì Úéæ èæïæóâõæå äðåæ êô äðîñâõêãíæ øêõé õéæ xóðä õéæ ôúïäéóðïêûâõêðï äðåæ ïææåæå õð äðîîöïêäâõæ øêõé Úêîöíêïì ÷êâ xÊĐ Ì

DESCRIPTION
Stratix V FPGA. The ProceV system provides massive capacity of up to 952K mance. In addition to 8-lane PCI Express Gen3, twenty six 12.5/14.1 Gbps up to 366 Gbps (full duplex). The combination of high-speed direct Express, CXP, SFP+, and general purpose high-speed transceivers makes ncy, high-performance networking and HPC applications. Powerful memory mory with 8 TBps throughput, 16 GB ECC DDR III, and optional 288 Mb DDR nputation and networking, and unique flexibility to achieve diverse algorithm k, a Gidel or user dedicated add-on daughter boards, the FPGA device can ocols such as HDMI, SDI, and Camera Link as well as with user's propriety I/O 3 interface allows for strong co-processing between a standard PC operating tor.
and Stratix IV E FPGA. It is used for development of vision algorithms, applications. ProcFG combines high-speed acquisition and powerful FPGA region of interest (ROI) offloading for convenient processing on standard PCs. age data or dynamically targets and extracts ROIs based on real-time FPGA apports acquisition from both line and area scan cameras.
ware development platform for prototyping and testing high-speed serial s kit includes two Arria V 5AGXFB3H6F40C6N FPGAs, the PCI Express x8 ine FMC connector, 1,152 MB 72 bit DDR3 SDRAM, 4 MB 36 bit QDR II+ onal 32 bit DDR3 SDRAM devices. This kit also includes SMA connectors and l transceiver I/Os.
for developing transceiver I/O-based Arria V GX FPGA designs. This kit tor, one HSMC connector, a 32 bit DDR3 SDRAM device, one-channel tput connected to SMAs, HDMI output, SDI input and output, 16x2 LCD
ers a quick and simple approach to develop custom ARM processor-based eiver-based Arria V FPGA fabric provides the highest bandwidth with the lications such as remote radio units, 10G/40G line cards, medical imaging, e acceleration of image- and video-processing applications. This nbedded Design Suite software development tools. The development board woint or rootport), two FMC expansion headers, dual Ethernet PHYs, and
Fers a comprehensive general-purpose development platform for many ndustrial, networking, military, and medical applications. The kit features itude of onboard resources including multiple banks of DDR3 and LPDDR2 s, user switches, USB, and RJ-45 connectors. The Cyclone V E FPGA ipment designers greater flexibility in implementing real-time Ethernet rnet IP cores.
clone V GT FPGA or Cyclone V GX FPGA applications. It offers a quick and low-power system-level designs and achieve rapid results. This kit supports PGA prototyping, FPGA power measurement, transceiver I/O performance up Gbps per lane), endpoint or rootport support.
lo P(

PRODUCT AND VENDOR NAME	DESCRIPTION
CYCLONE V FPGA AND SoC KITS	(CONTINUED)
Cyclone V SoC Development Kit Intel	

PRODUCT AND VENDOR NAME	DESCRIPTION
CYCLONE IV FPGA KITS	
Cyclone IV GX FPGA Development Kit Intel	This kit provides a comprehensive design environment that allows you to quickly develop low-cost and low-power FPGA system-level designs. This kit includes the PCI Express short card form factor, two HSMC connectors, and a 10/100/1000 Mbps Ethernet interface. Onboard memory includes 128 MB DDR2 SDRAM, 64 MB flash, and 4 MB SSRAM. This kit also includes SMA connectors, and 50 MHz, 100 MHz, and 125 MHz clock oscillators, as well as user interfaces including pushbuttons, LEDs, and a 7-segment LCD display.
Cyclone IV GX Transceiver Starter Kit Intel	This kit provides a low-cost platform for developing transceiver I/O-based FPGA designs. It includes the complete hardware and software you need to develop your FPGA design for cost-sensitive applications. You can measure the FPGA's power consumption, test the signal quality of the FPGA transceiver I/Os (up to 2.5 Gbps), and develop and test PCI Express Gen1 designs.
DEO-Nano Development Board Terasic Technologies	The DEO-Nano Development Board is a compact-sized FPGA development platform suited for prototyping circuit designs such as robots and "portable" projects. The board is designed to be used in the simplest possible implementation targeting the Cyclone IV device up to 22,320 LEs. This kit allows you to extend designs beyond the DEO-Nano board with two external general-purpose I/O (GPIO) headers and allows you to handle larger data storage and frame buffering with on-board memory devices including SDRAM and EEPROM. This kit is lightweight, reconfigurable, and suitable for mobile designs without excessive hardware. This kit provides enhanced user peripheral with LEDs and push buttons and three power scheme options including a USB Mini-AB port, 2-pin external power header, and two DC 5-V pins.
Industrial Networking Kit Terasic Technologies	The Industrial Networking Kit (INK) offers a comprehensive development platform for industrial automation and applications. The kit consists of the DE2-115 board featuring the Cyclone IV device and dual 10/100/1000-Mbps Ethernet, 128 MB SDRAM, 8 MB flash memory, 2 MB SRAM, HSMC and GPIO connectors, USB 2.0, an SD card slot, switches and buttons, LEDs, 16x2 display, audio and video, and VGA-out. The kit also includes an Industrial Communications Board (ICB-HSMC) that supports RS-485, RS-232, CAN, and additional I/O expansion.
DE2-115 Development and Education Board Terasic Technologies	This board is part of the DE2 educational development board series and features the Cyclone IV E EP4CE115 FPGA. The DE2-115 offers an optimal balance of low cost, low power, and a rich supply of logic, memory and DSP capabilities, as well as interfaces to support mainstream protocols including GbE. A HSMC connector is provided to support additional functionality and connectivity via HSMC daughtercards and cables.
MAX II CPLD Kits	
MAX II/MAX IIZ Development Kit System Level Solutions	This board provides a hardware platform for designing and developing simple and low-end systems based on MAX II or MAX IIZ devices. The board features a MAX II or MAX IIZ EPM240T100Cx or EPM240ZM100Cx device with 240 LEs and 8,192 bits of user flash memory (UFM). The board also supports vertical migration into EPM570T100Cx devices with 570 LEs and 8,192 bits of UFM.
MAX II Micro Terasic Technologies	This kit, equipped with the largest MAX II CPLD and an onboard Intel FPGA Download Cable, functions as a development and education board for CPLD designs. It includes reference designs (LCD controller, PCI, USB, and slot machine), demo designs, software, cables, and all the accessories needed to ensure fast and easy use of the MAX II CPLD.

SOC SYSTEM ON MODULES

www.intel.com/fpgasoms

System on modules (SoMs) provide a compact, pre-configured memory and software solution perfect for prototyping, proof-of-concept, and initial system production. SoMs enable you to focus on your IP, algorithms, and human/mechanical interfaces rather than the fundamentals of the SoC and electrical system and software bring-up. In some cases, SoMs can also make sense for full system production.

The following Intel SoC-based SoMs are available now from Intel FPGA DSN partners:

PARTNER	SOM	INTEL DEVICE	MAIN MEMORY ¹	MODULE IMAGE
Aries Embedded	MX10	Intel MAX 10 FPGA	512 MB DDR3 SDRAM	
Alorium Technology	Snō	Intel MAX 10 FPGA	2 KB Data SRAM, 32 KB Program	
Critical Link	MitySOM-5CSX	Cyclone V SoC	Up to 2 GB DDR3 with ECC	
DENX Computer Systems	MCV	Cyclone V SoC	1 GB DDR3 SDRAM	Cyclone V Tarter
Dream Chip	Intel Arria 10 System on Module	Intel Arria 10 SoC	6 GB DDR4 SDRAM with ECC	
Enclustra	Mercury SA Mercury+ SA2	Cyclone V SoC	Up to 2 GB DDR3L SDRAM	
Enclustra	Mercury+ AA1	Arria 10 SoC	8 GB DDR4 SDRAM with ECC	

Notes:

1. Processor main memory only. Additional FPGA, flash memory, eMMC, microSD, SD/MMC, and EEPROM memory may be provided but is not shown in this table.

Consult SoM vendor specifications for complete memory details.

PARTNER	SOM	INTEL DEVICE	MAIN MEMORY ¹	MODULE IMAGE
Enterpoint	Larg 2	Cyclone V SoC	512 M Byte DDR3 SDRAM	
EXOR International	uS02 microSOM*	Cyclone V SoC	1 GB DDR3 SDRAM	
iWave Systems	Qseven Module	Cyclone V SoC	512 MB DDR3 SDRAM with ECC	
iWave Systems	iW-Rainbow-G24M	Arria 10 SoC	1 GB DDR4 SDRAM, Others upon request.	
Macnica	Borax SoM	Cyclone V SoC	1 GB DDR3 SDRAM ¹	
REFLEX	Achilles	Arria 10 SoC	8 GB DDR4 SDRAM	
NovTech	NOVSOM CV NOVSOM CVlite	Cyclone V SoC	Up to 2 GB DDR3 SDRAM with ECC	

Notes:

1. Processor main memory only. Additional FPGA, flash memory, eMMC, microSD, SD/MMC, and EEPROM memory may be provided but is not shown in this table. Consult SoM vendor specifications for complete memory details.

For more information about Intel SoC system on modules, visit www.intel.com/fpgasoms.

SINGLE-BOARD COMPUTER

While a SoM must be plugged into a carrier board to access the I/Os, single-board computers (SBC) integrate I/O connectors along with the processor and memory. The SBC offering supports a variety of embedded operating systems and provides an integrated FPGA SoC hardware and software solution that accelerates time to market for production OEM and maker markets.

The following Intel SoC-based SBC is available now from Intel FPGA DSN partners:

TNER SBC	INTEL DEVICES	MAIN MEMORY	MODULE IMAGE
edded EP5CSXxS et Single-board computer	Cyclone V SoC	Up to 1 GB DDR3 SDRAM	

DESIGN STORE

fpgacloud.intel.com/devstore/

The Design Store contains Intel and partner FPGA design examples to assist you in designing with Intel FPGAs and associated development tools. Design examples are cataloged by development kit, Intel Quartus software versions, and IP for easy search. These design examples showcase a wide range of interface IP, core function IP, configuration, embedded, and end applications. New content is continuously added and updated for all product families. Adjunct sites containing Intel FPGA content such as the rocketboards.org embedded Linux site are also cataloged through the Design Store.

Check out the Design Store now: fpgacloud.intel.com/devstore

View Design Examples or Development Kits

(intel) FPGA	Bectanguler Ship	Login

DESIGN SOLUTIONS Network

FPGA Design Solutions Network

Intel's FPGA Design Solutions Network (DSN) is a global ecosystem of independent, qualified companies that offer an extensive portfolio of design services, IP, accelerator functions, and board products to help customers accelerate their time to market and lower product development risks. DSN members have expertise designing with Intel FPGA products and offer design services ranging from selecting the right devices for a new product design, to multiboard system-level designs and IP integration.

ACCELERATE PRODUCT DEVELOPMENT

- Use off-the-shelf IP, boards, commercial off-the-shelf (COTS) products, or solutions to reduce your development time
- Consult with a member to help you select the right FPGA, SoC, or Intel Enpirion devices
- Get help with new product design feasibility or complex high-performance system design

MINIMIZE PRODUCT DEVELOPMENT RISKS

You can quickly locate members who offer:

- Intel FPGA, SoC, or Enpirion engineering design services
- Custom development kits, modules, boards, COTS, or IP
- Comprehensive end-market application and Intel FPGA expertise
- Prototyping, compliance, and manufacturing support

SUPPORT FROM INTEL

- Members must meet the established criteria to maintain the DSN program membership
- Members qualify for Intel benefits to accelerate customer support

Platinum members have the highest level of Intel customer project design or IP/board/COTS product experience.

Gold members offer a wide range of Intel FPGA, application, or solution expertise across our product families.

Visit www.intel.com/dsn to search for DSN Platinum and Gold partners offering FPGA design services, IP, or boards. You can also search by end-market application, Intel FPGA, geography, or expertise.

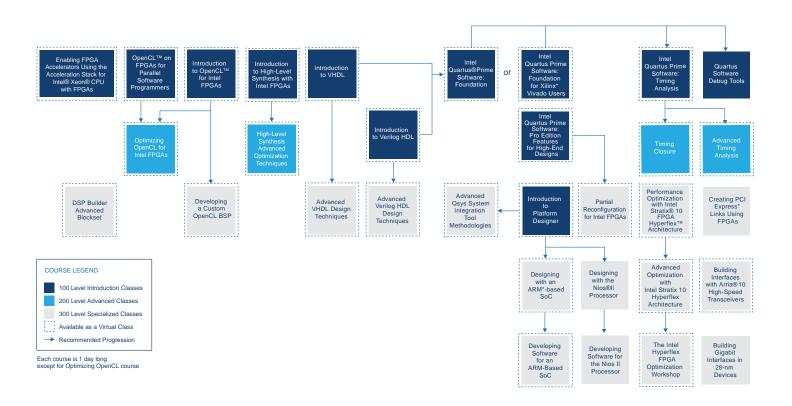
DSN PLATINUM PARTNERS

Adeas	Kondo Electronics
Adaptive Micro-Ware	Mantaro Networks
af inventions GmbH	Mercury Systems
Algo-Logic	Nallatech - Molex
ALSE	Northwest Logic
Arrive Technologies	NovTech, Inc.
Bigstream Solutions, Inc.	Orchid Technologies
Bitec	REFLEX CES
BittWare, Inc.	Ross Video
CAST Inc.	System Level Solutions, Inc.
Colorado Engineering	Swarm64
Critical Link	Tamba Networks
Design Gateway Co., Ltd.	Tata Elxsi
Foresys	Terasic
Fujisoft Inc.	Tokyo Electron Devices
GIDEL	Zeuxion
IntelliProp, Inc.	
iWave Systems Technologies Pvt. Ltd.	

www.intel.com/fpgatraining

TRAINING OVERVIEW

We offer an extensive curriculum of classes to deepen your expertise. Our classes are beneficial whether you're new to FPGA, CPLD, and SoC design, or are an advanced user wanting an update on the latest tools, tips, and tricks. Our training paths are delivered in four ways:


- Instructor-led training Typically lasting one to two days, involves in-person instruction with hands-on exercises from an Intel or Intel partner subject matter expert. Fees vary.
- Virtual classrooms Involve live instructor-taught training over the Web, allowing you to benefit from the interactivity with an instructor from the comfort of your home or office. Classes are taught in 4.5-hour sessions across consecutive days.
- Online training Typically 30 minutes long, features pre-recorded presentations and demonstrations. Online classes are free and can be taken at any time. You can find some of these online training courses on this YouTube playlist. More are coming.
- Engineer-to-Engineer How-to Videos These short how-to YouTube videos teach specific skills and help solve your issues.

Learn more about our training program or sign up for classes at **www.intel.com/fpgatraining**.

Start sharpening your competitive edge today!

To help you decide which courses might be most useful to you, we've grouped classes into specific curricula. Curricula paths include Intel FPGA fundamentals, I/O interfaces, embedded hardware, software development, DSP, and more.

The flowchart below gives you an overview of all instructor-led and virtual courses from Intel. The foundation courses are shown at the top. The advanced follow-on courses are shown just below the foundation courses. Specialized courses are shown at the bottom. Any course with a dotted line around it indicates that it is available as either an instuctor-led class or as a virtual class. If there is no dotted line around a course then it is only available as an instructor-led course. The arrows show you the order we recommend some of the courses to be taken.

Instructor-Led and Virtual Classes

VIRTUAL CLASSROOM COURSES DENOTED WITH A-(ALL COURSES ARE ONE DAY IN LENGTH UNLESS OTHERWISE NOTED)

COURSE CATEGORY	GENERAL DESCRIPTION	COURSE TITLES	
Acceleration	Develop and deploy Intel FPGAs for workload optimization in data center and cloud environments.	• Enabling FPGA Accelerators Using the Acceleration Stack for Intel Xeon® CPU with FPGAs	
High-Level Design	Accelerate algorithm performance with Open Computing Language (OpenCL) by offloading to an FPGA.	 OpenCL on FPGAs for Parallel Software Programmers Introduction to OpenCL for Intel FPGAs Optimizing OpenCL for Intel FPGAs (16 Hours) Developing a Custom OpenCL BSP Introduction to High-Level Synthesis with Intel FPGAs High-Level Synthesis Advanced Optimization Techniques 	
Design Languages	Attain the skills needed to design with Verilog HDL and VHDL for programmable logic.	 Introduction to VHDL- Advanced VHDL Design Techniques- Introduction to Verilog HDL- Advanced Verilog HDL Design Techniques- 	
Intel Quartus Prime Software	Acquire design entry, compilation, programming, verification, and optimization skills by learning how to use both basic and advanced features of the Intel Quartus Prime software.	 The Intel Quartus Prime Software: Foundation · The Intel Quartus Prime Software: Foundation for Xilinx* Vivado* Design Suite Users · Intel Quartus Prime Software: Pro Edition Features for High-End Designs · The Quartus Software Debug Tools The Intel Quartus Prime Software Design Series: Timing Analysis with Timing Analyzer · Advanced Timing Analysis with TimeQuest · Timing Closure with the Quartus II Software · Partial Reconfiguration with Intel FPGAs · 	
Design Optimization Techniques	Learn design techniques and Intel Quartus Prime software features to improve design performance. Note: While the focus of this course is the Intel Stratix 10 device family, many of the techniques you will learn can be used to improve performance in other device architectures.	 Performance Optimization with Intel Stratix 10 FPGA Hyperflex Architecture Advanced Optimization with Intel Stratix 10 FPGA Hyperflex Architecture The Intel Hyperflex FPGA Optimization Workshop 	
System Integration	Build hierarchical systems by integrating IP and custom logic.	 Introduction to the Platform Designer System Integration Tool Advanced Qsys System Integration Tool Methodologies 	
Embedded System Design	Learn to design an ARM-based or Nios II processor system in an Intel FPGA.	 Designing with the Nios II Processor Developing Software for the Nios II Processor Designing with an ARM-based SoC⁻ Developing Software for an ARM-based SoC⁻ 	
System Design	Solve DSP and video system design challenges us- ing Intel technology.	• Designing with DSP Builder for Intel FPGAs-	
Connectivity Design	Build high-speed, gigabit interfaces using embedded transceivers found in leading-edge FPGA families.	 Building Interfaces with Arria 10 High-Speed Transceivers Building Gigabit Interfaces in 28 nm Devices Creating PCI Express Links Using FPGAs 	

FREE ONLINE TRAINING COURSES (COURSES ARE APPROXIMATELY ONE HOUR LONG)

COURSE CATEGORY	COURSE TITLES	LANGUAGES
	Introduction to Incremental Compilation in the Intel Quartus Prime Standard Edition Software	English, Chinese, and Japanese
	Incremental Block-Based Compilation in the Intel Quartus Prime Pro Software: Design Partitioning	English only
	Incremental Block-Based Compilation in the Intel Quartus Prime Pro Software: Introduction	English only
	Incremental Block-Based Compilation in the Intel Quartus Prime Pro Software: Timing Closure & Tips	English only
Software Overview	Design Block Reuse in the Intel Quartus Prime Pro Software	English only
and Design Entry	Fast & Easy I/O System Design with Interface Planner	English, Chinese, and Japanese
(Continued)	SERDES Channel Simulation with IBIS-AMI Models	English and Japanese
	Managing Metastability with the Quartus II Software	English only
	Partial Reconfiguration for Intel Arria 10 Devices: Introduction & Project Assignments	English only
	Partial Reconfiguration for 28 nm Devices	English and Chinese
	Partial Reconfiguration for Intel Arria 10 Devices: Design Guidelines & Host Requirements	English only
	Partial Reconfiguration for Intel Arria 10 Devices: PR IP Core & Project Flow	English only
	Partial Reconfiguration for Intel Arria 10 Devices: Output Files & Demonstration	English only
	Overview of Mentor Graphics ModelSim Software	English and Japanese
	SignalTap II Logic Analyzer: Introduction & Getting Started	English, Chinese, and Japanese
	Signal Tap II Logic Analyzer: Triggering Options, Compilation, & Device Programming	English only
	Signal Tap II Logic Analyzer: Data Acquisition & Additional Features	English only
Verification	SignalTap II Logic Analyzer: Basic Trigger Conditions & Configuration	English only
and Debugging	Using Intel Quartus Prime Pro Software: Chip Planner	English and Japanese
	Debugging and Communicating with an FPGA Using the Virtual JTAG Megafunction	English only
	System Console	English and Chinese
	Debugging JTAG Chain Integrity	English only
	Power Analysis	English and Chinese
	Power Optimization	English only
	Timing Analyzer: Introduction to Timing Analysis	English, Chinese, and Japanese
	Timing Analyzer: Required SDC Constraints	English only
	Timing Analyzer: Intel Quartus Prime Integration & Reporting	English only
	Timing Analyzer: Timing Analyzer GUI	English only
	Using Design Space Explorer	English and Japanese
	Timing Closure Using TimeQuest Custom Reporting	English only
	Design Evaluation for Timing Closure	English and Chinese
	Good High-Speed Design Practices	English only
	Constraining Source Synchronous Interfaces	English and Chinese
	Constraining Double Data Rate Source Synchronous Interfaces	English, Chinese, and Japanese
Timing Analysis	Intel Stratix 10 Hyperflex FPGA Architecture Overview	English, Chinese, and Japanese
and Closure	Intel Quartus Prime Software Hyper-Aware Design Flow	English, Chinese, and Japanese
	Using Fast Forward Compile for the Intel Hyperflex FPGA Architecture	English, Chinese, and Japanese
	Introduction to Hyper-Retiming	English, Chinese, and Japanese
	Eliminating Barriers to Hyper-Retiming	English, Chinese, and Japanese
	Introduction to Hyper-Pipelining	English and Japanese
	Introduction to Hyper-Optimization	English, Chinese, and Japanese
	Intel Hyperflex FPGA Architecture Design: Analyzing Critical Chains	English only
	Hyper-Optimization Techniques 1: Loop Analysis and Solutions	English only
	Hyper-Optimization Techniques 2: Pre-Computation	English only
	Hyper-Optimization Techniques 3: Shannon's Decomposition	English only
	Creating High-Performance Designs in Intel Stratix 10 FPGAs	English only
	Creating High-Performance Designs in 20 nm Intel FPGAs	English and Chinese

FREE ONLINE TRAINING COURSES (COURSES ARE APPROXIMATELY ONE HOUR LONG)

COURSE CATEGORY	COURSE TITLES	LANGUAGES
	Using High Performance Memory Interfaces in Altera 28 nm and 40 nm FPGAs	English and Chinese
	Introduction to Hybrid Memory Cubes with Altera FPGAs	English only
	Implementing the Hybrid Memory Cube Controller IP in an Altera FPGA	English only
	High Bandwidth Memory (HBM2) Interfaces in Intel Stratix 10 MX Devices: Introduction, Architecture	English only
Memory Interfaces	High Bandwidth Memory (HBM2) Interfaces in Intel Stratix 10 MX Devices: HBMC Features	English only
	High Bandwidth Memory (HBM2) Interfaces in Intel Stratix 10 MX Devices: Implementation	English only
	Introduction to Memory Interfaces IP in Intel FPGA Devices	English, Chinese, and Japanese
	Integrating Memory Interfaces IP in Intel FPGA Devices	English, Chinese, and Japanese
	On-Chip Debugging of Memory Interfaces IP in Intel FPGA Devices	English, Chinese, and Japanese
	Verifying Memory Interfaces IP in Intel FPGA Devices	English, Chinese, and Japanese
	Stratix 10 Transceiver Basics	English, Chinese, and Japanese
	Transceiver Basics for 20 nm and 28 nm Devices	English, Chinese and Japanese
	Transceiver Toolkit for 28-nm Devices	English and Chinese
	Transceiver Toolkit for Intel Arria 10 and Cyclone 10 GX Devices	English only
	Generation 10 Transceiver Clocking	English only
	Building a Generation 10 Transceiver PHY Layer	English only
	Building an Intel Stratix 10 FPGA Transceiver PHY Layer	English only
	Advanced Signal Conditioning for Stratix IV and Stratix V Receivers	English only
	Advanced Signal Conditioning for Arria 10 FPGA Transceivers	English only
	Introduction to the Arria 10 Hard IP for PCI Express	English only
	Customizing Intel Stratix 10, Intel Arria 10 & Intel Cyclone 10 GX FPGA Hard IP for PCI Express	English only
Connectivity Design	Connecting to the Arria 10 Hard IP for PCI Express	English only
	Designing with Intel Stratix 10, Intel Arria 10 & Intel Cyclone 10 GX Hard IP for PCI Express	English only
	Introduction to the 28 nm Hard IP for PCI Express	English only
	Customizing the 28 nm Hard IP for PCI Express	English only
	Connecting to the 28 nm Hard IP for PCI Express	English only
	Designing with the 28 nm Hard IP for PCI Express	English only
	Getting Started with Altera's 40 nm PCI Express Solutions	English and Japanese
	JESD204B MegaCore IP Overview	English only
	Introduction to the Triple-Speed Ethernet MegaCore Function	English and Chinese
	Implementing the Triple-Speed Ethernet MegaCore Function	English only
	Introduction to the 10Gb Ethernet PHY Intel FPGA IP Cores	English only
	Introduction to the Low Latency 10Gb Ethernet MAC Intel FPGA IP Core	English only
	Using the 10Gb Ethernet Design Examples	English only
	Introduction to Platform Designer	English, Chinese, and Japanese
	Creating a System Design with Platform Designer: Getting Started	English, Chinese, and Japanese
	Creating a System Design with Platform Designer: Finish the System	English only
	Platform Designer in the Intel Quartus Prime Pro Edition Software	English only
	Advanced System Design Using Platform Designer: Component & System Simulation	English only
	Advanced System Design Using Platform Designer: System Optimization	English only
System Design	Advanced System Design Using Platform Designer: System Verification with System Console	English and Chinese
ysteni Desigli	Advanced System Design Using Platform Designer: Utilizing Hierarchy	English only
	Custom IP Development Using Avalon and AXI Interfaces	English and Chinese
	DSP Builder Advanced Blockset: Getting Started	English only
	DSP Builder Advanced Blockset: Interfaces and IP Libraries	English only
	DSP Builder Advanced Blockset: Using Primitives	English only

Training

FREE ONLINE TRAINING COURSES (COURSES ARE APPROXIMATELY ONE HOUR LONG)

COURSE CATEGORY	COURSE TITLES	LANGUAGES
	Creating Reusable Design Blocks: Introduction to IP Reuse with the Intel Quartus Prime Software	English and Japanese
System Design (Continued)	Creating Reusable Design Blocks: IP Design & Implementation with the Intel Quartus Prime Software	English and Japanese
	Creating Reusable Design Blocks: IP Integration with the Intel Quartus Prime Software	English and Japanese
	Avalon Verification Suite	English and Chinese
	Intel Stratix 10 SoC FPGA Technical Overview	English only
	Hardware Design Flow for an ARM-Based SoC	English, Chinese, and Japanese
	Software Design Flow for an ARM-Based SoC	English, Chinese, and Japanese
	Initial Design Review for Arria 10 SoC FPGA Designs	English only
	Getting Started with Linux for Altera SoCs	English and Japanese
	SoC Bare-metal Programming and Hardware Libraries	English only
	SoC Hardware Overview: Flash Controllers and Interface Protocols	English and Chinese
	SoC Hardware Overview: Interconnect and Memory	English and Chinese
	SoC Hardware Overview: System Management, Debug, and General Purpose Peripherals	English and Chinese
	SoC Hardware Overview: the Microprocessor Unit	English and Chinese
	Profiling Intel SoC FPGAs with ARM Streamline	English only
	Creating Second Stage Bootloader for Altera SoCs	English only
Embedded System	Secure Boot with Arria 10 SoC FPGAs	English only
Design	The Nios II Processor: Booting	English only
	Designing with the Nios II Processor and Qsys - Day 1	Japanese only
	The Nios II Processor: Introduction to Developing Software	English and Japanese
	Developing Software for the Nios II Processor: Tools Overview	Chinese only
	Developing Software for the Nios II Processor: Design Flow	Chinese only
	Using the Nios II Processor	Chinese only
	Using the Nios II Processor: Custom Components and Instructions	English only
	Using the Nios II Processor: Hardware Development	English only
	Using the Nios II Processor: Software Development	English only
	Developing Software for the Nios II Processor: Nios II Software Build Tools for Eclipse	English and Japanese
	The Nios II Processor: Hardware Abstraction Layer	English, Chinese, and Japanese
	Lauterbach Debug Tools	English only
	Introduction to Graphics	English only
	Introduction to Configuring Intel FPGAs	English and Chinese
	Configuration Schemes for Intel FPGAs	English and Chinese
	Configuration Solutions for Altera FPGAs	English and Chinese
	Configuration for Stratix 10 Devices	English, Chinese, and Japanese
	Integrating an Analog to Digital Converter in Intel MAX 10 Devices	English only
	Introduction to Analog to Digital Conversion in Intel MAX 10 Devices	English only
Device-Specific	Using the ADC Toolkit in Intel MAX 10 Devices	English only
Training	Using the MAX 10 User Flash Memory	English only
-	Using the MAX 10 User Flash Memory with the Nios II Processor	English only
	Remote System Upgrade in Intel MAX 10 Devices	English, Chinese, and Japanese
	Remote System Upgrade in MAX 10 Devices: Design Flow & Demonstration	Chinese only
	Mitigating Single Event Upsets in Intel Arria 10 and Intel Cyclone 10 GX Devices	English and Japanese
	SEU Mitigation in Arria 10 Devices: Hierarchy Tagging	English only
	SEU Mitigation in Intel FPGA Devices: Fault Injection	English only
	Thermal Management in Intel Stratix 10 Devices	English and Chinese
	Command-Line Scripting	English only
Scripting	Introduction to Tcl	English and Chinese
	Quartus II Software Tcl Scripting	English, Chinese, and Japanese

† Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will

© Intel Corporation. Intel, the Intel logo, the Intel Inside mark and logo, the Intel. Experience What's Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Intel Atom, Intel Core, Intel Xeon, MAX, Nios, Quartus and Stratix are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. See Trademarks on intel.com for full list of Intel trademarks. *Other marks and brands may be claimed as the property of others.

SG-PRDCT-18.1